• Title/Summary/Keyword: Microstructure properties

Search Result 4,066, Processing Time 0.027 seconds

Microstructure and High Temperature Strength of Rapidly Solidified Al-8wt%Fe Alloy (급속응고된 Al-8wt%Fe 합금의 미세조직 및 고온강도)

  • 최병준
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.192-198
    • /
    • 1998
  • Microstructure and mechanical properties were examined on rapidly solidified Al-8wt%Fe alloy. High temperature strength test was also undertaken, and it is shown that the refinement in microstructure resulting from extremely rapid cooling rates gives rise to improved high temperature strength, but the elongation to fracture of this material decreases with increasing temperature, particularly in the temperature range up to 30$0^{\circ}C$. Specimens heat-treated for 100 hrs were analyzed with TEM micrographs to understand the thermal stability of this material.

  • PDF

The Effect of Microstructure and Mechanical Property with Cooling Rapid in Boron-Treated Low Carbon Low Alloy Steel (저탄소.저합금 보론 첨가강의 냉각속도에 따른 미세조직과 기계적 성질의 영향)

  • Son, J.Y.;Lee, G.D.;Kim, S.G.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.207-210
    • /
    • 2008
  • The effects of boron additions in steels have long been recognized as very important, mainly with respect to hardnability of heat treatable steels. we investigated the effect of the microstructure and mechanical properties with cooling condition after heat treatment of the boron-treated(${\fallingdotseq}8{\sim}18ppm$) low carbon(${\fallingdotseq}0.2%C$) low alloy steel. The specimens were austenitised for 10 min at $910^{\circ}C$, cooled for the various periods of time from 10 sec to 30 sec or with water after forming for 15 sec. After cooling, mechanical properties were measured by tensile test and hardness test. For analysis of microstructure, Optical were carried out.

  • PDF

Microstructure and deformation behavior of nanostructured dual-phase steel (나노 결정립 이상 조직강의 미세조직 및 변형거동)

  • Ko, Y.G.;Lee, K.M.;Lee, C.W.;Kum, D.H.;Shin, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.445-448
    • /
    • 2009
  • The present work deals with microstructure and tensile deformation of nanostructured dual-phase steel consisting of ferrite and martensite phases. Prior to deformation, a fully martensite phase is prepared and then processed by equal channel angular pressing (ECAP) and subsequent annealing. Room-temperature tensile properties are examined and compared to those of dual-phase steels with coarse grains. Due to the combined effects coming from the grain refinement of both phases and their uniform distributions, the nanostructured dual-phase steel exhibits better strength and ductility than coarse grained counterpart, achieving ${\sim}1\;GPa$ and ${\sim}20%$ for tensile strength and elongation, respectively.

  • PDF

Effect of Deformation Temperature on Microstructure and Hardness of Plain Carbon Steels (변형 온도에 따른 탄소강의 미세조직 및 경도 변화)

  • Lee, T.;Park, S.H.;Lee, D.L.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.362-365
    • /
    • 2009
  • Microstructural evolution and the mechanical properties of various carbon steels were investigated with the variation deformation temperature to explore the optimum microstructure with excellent combination of strength and ductility. For this purpose, three carbon steels containing different carbon contents were deformed using Gleeble 3500 at temperatures including austenitic, austenitic/ferritic, austenitic/cementitic, ferritic/cementitic regions. The results showed that in the medium and high carbon steels, cementite particles became finer with decreasing deformation temperature resulting higher hardness but lower ductility. Further effort is needed to find out optimum microstructures with enhanced mechanical properties.

  • PDF

Effect of Grain Boundary Composition on Microstructure and Mechanical Properties of Silicon Carbide (입계상 조성이 탄화규소의 미세구조와 기계적 특성에 미치는 영향)

  • 김재연;김영욱;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.911-916
    • /
    • 1998
  • By using {{{{ { { {Y }_{3 }Al }_{5 }O }_{12 } }} (YAG) and SiO2 as sintering additives the effect of the composition of sintering ad-ditives on microstructure and mechanical properties of the hog-pressed and subsequently annealed SiC ma-terials were investigated. Microstructures of sintered and annealed materials were strongly dependent onthe composition of sintering additives. The average diameter and volume fraction of elongated grains in an-nealed materials increased with the SiO2/YAg ratio while the fracture toughness increased with the SiO2/YAg ratio. The average MPa.{{{{ { m}^{1/2 } }} respectively. Typical strength and fracture toughness of an annealed material with SiO2/YAg ra-tionof 0.67 were 371 MPa and 5.6 MPa.{{{{ { m}^{1/2 } }} respectively.

  • PDF

Microstructure and Piezoelectric Properties of PMN-PNN-PZT with the Sintering Temperature (소결온도에 따른 PMN-PNN-PZT 미세구조 및 압전특성)

  • Lee, Hyun-Seok;Yoo, Ju-Hyun;Yoon, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.217-218
    • /
    • 2006
  • In this study, In order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured with the sintering temperature, and their microstructure and piezoelectric properties were investigated. At the composition ceramics sintered at $900^{\circ}C$, dielectric constant(${\varepsilone}_r$), electromechanical coupling factor($k_p$), piezoelectric constant($d_{33}$) and mechanical quality factor(Qm) showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

  • PDF

Effects of TMCP on the microstructure and mechanical properties of low carbon HSLA steels (저탄소.저합금 강의 미세구조 및 기계적 성질에 미치는 가공 열처리 조건의 영향)

  • Kang, J.S.;Huang, Yusen;Lee, C.W.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.172-175
    • /
    • 2006
  • Effects of deformation at austenite non-recrystallization region and cooling rate on the microstructure and mechanical properties of low carbon (0.06 wt. %) high strength low alloy steels have been investigated. Average grain size decreased and polygonal ferrite transformation promoted with increasing deformation amount due to increase of ferrite nucleation site. As cooling rate increased, the major microstructure changed from polygonal ferrite to acicular ferrite and the fraction of M/A constituents gradually increased. Discontinuous yielding occurred in highly deformed specimen due to the formation of polygonal ferrite. However, small grain size of highly deformed specimen caused lower ductile-to-brittle transition temperature than slightly deformed specimen.

  • PDF

Effects of Additives on the Microstructure and Mechanical Properties in Porous Aluminum Titanate Ceramics (각종 첨가제가 다공성 Aluminum Titanate Ceramics의 미세구조 및 기계적 특성에 미치는 영향)

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.137-146
    • /
    • 1994
  • This experiments were focused on a modification of mechamical properties and structure in porous aluminum titanate ceramics by new additives which have been not researched yet. These were consisted of four kinds of additives i.e. Bi2O3, FeO, ZnO and NiO by addition amount of 1 wt% and 5 wt% respectively. The addition of Bi2O3 retarded a degree of syntehsis of aluminum titanate and accelerated in FeO, ZnO, NiO additives. Also, the most effective accelerator in synthesis of alunium titanate was FeO. A additives for the most effective of modification of microstructure, sharp distribtion of pore size and mechanical proterties was on ZnO addition and showed the lowest average pore size and narrowed pore size distribution. In order to improve of microstructure and pore size distribution in porous aluminum titanate ceramics was desired the addition amount of 1 wt% compare to 5 wt%.

  • PDF

A Comparative Study on the Characteristics of TiN Films Deposited by Plasma-Assisted CVD, Ion Plating and Reactive Sputtering (플라즈마 화학증착법, 이온 플레이팅법 및 반응성 스퍼터링법에 의해 증착된 TiN 박막의 특성 비교 연구)

  • 안치범;정병진;이원종;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.731-738
    • /
    • 1994
  • TiN films were deposited on high speed steels by plasma assisted chemical vapor deposition (PACVD), cathode arc ion plating (CAIP) and reactive magnetron sputtering (RMS). The properties of the films deposited by the three different methods were compared. The preferred oriented plane of PACVD-TiN is (200) and those of CAIP-TiN and RMS-TiN are (111). PACVD-TiN shows a dome surface and a microstructure having small grains. CAIP-TiN shows the highest microhardness and the best adhesion strength of the three because it has a dense microstructure and an ill-defined interface. But is shows the greatest surface roughness due to the Ti droplet created by the arc. RMS-TiN shows a microstructure having large voids so that its properties in microhardness and adhesion are the worst of the three.

  • PDF

Microstructure and Electrical Properties of $RuO_2$ System Thick Film Resistors ($RuO_2$계 후막저항체의 미세구조와 전기적성질)

  • 구본급;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.337-344
    • /
    • 1990
  • As a function of sintering temperature and time, the electrical properties of ruthenium based thick film resistors were investigated with microstructure. The variatio of resistivity and TCR(temperature coefficient of resistance)trends of sintered speciman at various sintering temperature were different low resistivity paste(Du Pont 1721) from high one(Du Pont 1741). These phenomena are deeply relative to microstructure of sintered film. With increasing the sintering temperature for 1721 system, the electrical sheet resistivity decreased, but again gradually increased above 80$0^{\circ}C$. And TCR trends in 1721 system are all positive. On the other hand the electrical sheet resistivity of 1741 resistor system decreased with sintering temperature. And TCR trends variable according to sintering temperature. TCR of speciman sintered at $700^{\circ}C$ was negative value, and TCR of 80$0^{\circ}C$ sintered speciman coexisted negative and positive value. But in case of speciman sintered at 90$0^{\circ}C$, TCR was positive value. As results of this fact, it was well known that the charge carrier contributied to electrical conduction in 1741 resistor system varied with sintering temperature.

  • PDF