• Title/Summary/Keyword: Microstructure and Brinell hardness

Search Result 5, Processing Time 0.022 seconds

Prediction of Microstructure and Hardness of the Ductile Cast Iron Heat-treated at the Intercritical Temperatures (임계간 온도에서 열처리한 구상흑연주철의 미세조직 및 경도 예측)

  • Nam-Hyuk Seo;Jun-Hyub Jeon;Soo-Yeong Song;Jong-Soo Kim;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.279-285
    • /
    • 2023
  • In order to predict the mechanical properties of ductile cast iron heat treated in an intercritical temperature range, samples machined from cast iron with a tensile strength of 450 MPa were heat-treated at various intercritical temperatures and air-cooled, after which a microstructural analysis and Brinell hardness test were conducted. As the heat treatment temperature was increased in the intercritical temperature range, the ferrite fraction in the ductile cast iron decreased and the pearlite fraction increased, whereas the nodularity and nodule count did not change considerably from the corresponding values in the as-cast condition. The Brinell hardness values of the heat-treated ductile cast iron increased gradually as the heat treatment temperature was increased. Based on the measured alloy composition, the fraction of each stable phase and the hardness model from the literature, the hardness of the ductile cast iron heat treated in the intercritical temperature range was calculated, showing values very similar to the measured hardness data. In order to check whether it is possible to predict the hardness of heat-treated ductile cast iron by using the phase fraction obtained from thermodynamic calculations, the volumes of graphite, ferrite, and austenite in the alloy were calculated for each temperature condition. Those volume fractions were then converted into areas of each phase for hardness prediction of the heat-treated ductile cast iron. The hardness values of the cast iron samples based on thermodynamic calculations and on the hardness prediction model were similar within an error range up to 27 compared to the measured hardness data.

Heat Resistance Properties of Thin Section HiSiMo Ductile Iron for Exhaust Manifold (배기 매니폴드용 박육 고규소 구상흑연주철의 내열 특성)

  • Lee, Do-Kyung;Kim, Sung-Gyu;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.109-114
    • /
    • 2013
  • In this study, the microstructure, mechanical properties and high temperature oxidation characteristics of HiSiMo and HiSiMoM ductile iron for exhaust manifold were investigated. The HiSiMoM ductile iron was developed by optimization of alloying element addition and casting design. The exhaust manifold prototype was fabricated using the HiSiMoM iron and this resulted in the weight saving of 0.73kg. The microstructures of the HiSiMo and HiSiMoM irons were similar each other and graphite nodularity was 89% and 93% respectively. Tensile strengths of them were 663.5 and 674.4 MPa and Brinell hardness were 235.3 and 243.9 respectively. Both irons showed parabolic weight gain behavior in high temperature oxidation atmosphere. Oxidation layer was divided into external and internal layers. The weight gain of the HiSiMoM iron was lower than that of the HiSiMo iron after isothermal oxidation test at $900^{\circ}C$. This should be rationalized by higher Si enrichment at the interface of the matrix and internal layer of the HiSiMoM iron.

Effect of Ni or Cu content on Microstructure and Mechanical Properties of Solution Strengthened Ferritic Ductile Cast Iron (고용강화 페라이트계 구상흑연주철의 미세조직 및 기계적 성질에 미치는 Ni 및 Cu의 영향)

  • Bang, Hyeon-Sik;Kim, Sun-Joong;Song, Soo-Young;Kim, Min-Su
    • Journal of Korea Foundry Society
    • /
    • v.41 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • In order to experimentally investigate the effect of Ni or Cu addition on microstructure and mechanical properties of high Si Solution Strengthened Ferritic Ductile cast Iron (SSF DI), a series of lab-scale sand casting experiment were conducted by changing initial concentration of Ni up to 3.0wt% or Cu up to 0.9wt% in the alloy. It was found that increase in Ni or Cu content in the alloy leads to increase in strength properties and hardness as well as decrease in ductility. The higher Ni or Cu content the SSF DI has, the higher fraction of pearlite was observed. At similar levels of Ni or Cu contents in the alloy, higher pearlite area fraction was observed in the Cu-containing SSF DI than that in the Ni-containing SSF DI. When the effect of the microstructure on the mechanical properties of Ni-containing SSF DI was considered, Ni-containing SSF DI was found to have excellent strength and hardness as well as good elongation when the pearlite fraction was controlled less than 10%. As the pearlite fraction in the Ni-containing SSF DI exceeds 10%, however, it shows drastic decrease in elongation. Meanwhile, gradual increase in strength and hardness, and decrease in elongation with respect to increase in pearlite fraction were observed in Cu-containing SSF DI. The different microstructure-mechanical property relationships between Ni-containing and Cu-containing SSF DI were due to the combined effect of the relatively weak pearlite stabilizing effect of Ni compared to that of Cu in high Si SSF DI, and matrix strengthening effect caused by the different amounts of those alloying elements required for similar pearlite fraction.

Effect of Quenching Heat-treatment on Mechanical Properties and Microstructure of Modified C95600 Bronze (개량형 C95600 청동의 기계적 성질과 미세조직에 미치는 퀜칭 열처리의 영향)

  • Lee, Sung-Yul;Moon, Kyung-Man;Oh, Jae-Hwan;Shin, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.97-104
    • /
    • 2011
  • Modified C95600 bronze contains Fe component of 0.7 weight percentage besides Cu-7Al-2.5Si composition. The shape of centrifugal cast is a circular pipe with thick wall. Specimens machined from the centrifugal cast were quenched in oil after isothermal holding at a given heat treatment temperature in the range of $700{\sim}900^{\circ}C$. Mechanical properties and structural morphology are depended on the quenching heat treatment temperature regardless of isothermal holding time. Tensile strength or Brinell hardness is increased with increasing heat treatment temperature. The microstructure caused by quenching contains mixing phases of ${\alpha}+{\beta}'+FeSi+{\kappa}$ which martensite of ${\beta}'$ phase has been transformed from ${\beta}$ phase. Effect of isothermal holding temperature on mechanical properties in case of quenching heat treatment attributes to the change of volume fraction of ${\beta}'$ on the structural morphology. Mechanical characteristics of specimen, initially quenched from $850^{\circ}C$, and then tempered at $500^{\circ}C$, does not show an obvious softening indication, because disappearance of ${\beta}'$ during tempering process can be compensated by precipitation of brittle phase ${\gamma}$.

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.