• Title/Summary/Keyword: Microstructural property

Search Result 177, Processing Time 0.026 seconds

A Study on Correlation of Microstructural Degradation and Mechanical Properties of 9-12%Cr-Steel for Ultra-Super Critical Power Generation (초초임계압 발전용 소재의 장시간 열처리에 따른 미세조직 변화와 기계적 특성의 상관관계 연구)

  • Joo Sungwook;Yoo Junghoon;Shin Keesam;Hur Sung Kang;Lee Je-Hyun;Suk Jin Ik;Kim Jeong Tae;Kim Byung Hoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • For the good combination of high-temperature strength, toughness and creep property, $9-12\%$ chromium steels are often used for gas turbine compressors, steam turbine rotors, blade and casing. In this study, the correlation of microstructural evolution and mechanical properties was investigated fur the specimens heat-treated at 600, 650 and $700^{\circ}C$ for 1000, 3000 and 5000 hrs. The microstructure of as-received specimen was tempered martensite with a high dislocation density, small sub-grains and fine secondary phase such as $M_23C_6$. Aging for long-time at high temperature caused the growth of martensite lath and the decrease of dislocation density resulting in the decrease in strength. However, the evolution of secondary phases had influence on hardness, yield strength and impact property. In the group A specimen aged at $600^{\circ}C\;and\;650^{\circ}C$, Laves phase was observed. The Laves phase caused the increase of the hardness and the decrease of the impact property. In addition, the abrupt growth of secondary phases caused decrease of the impact property in both A and B group specimens.

Effect of Sintering Atmosphere Changing Temperature on Microstructure and Mechanical Property of Al2O3/Cu Nanocomposites (소결분위기 변환온도가 Al2O3/Cu 나노복합재료의 미세조직과 파괴강도에 미치는 영향)

  • Oh Sung-Tag;Yoon Se-Joong
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.421-426
    • /
    • 2004
  • The microstructure and mechanical property of hot-pressed $Al_2O_3/Cu$ composites with a different temperature for atmosphere changing from H$_{2}$ to Ar have been studied. When atmosphere-changed from H$_{2}$ to Ar gas at 145$0^{\circ}C$, the hot-pressed composite was characterized by inhomogeneous microstructure and low fracture strength. On the contrary, when atmosphere-changed at low temperature of 110$0^{\circ}C$ the composite showed more homogeneous microstructure, higher fracture strength and smaller deviation in strength. Based on the thermodynamic consideration and microstructural analysis, it was interpreted that the Cu wetting behavior relating to the formation of CuAlO$_{2}$ is probably responsible for strong dependence of microstructure on atmosphere changing temperature. The reason for a strong sensitivity of fracture strength and especially of its deviation to atmosphere changing temperature was explained by the microstructural inhomogeneity and by the role of CuAlO$_{2}$ phase on the interfacial bonding strength.

Evaluation of the Natural Quartz with Diamagnetic and Microstructural Characterization (천연수정의 자기적 특성과 미세구조에 의한 품질평가)

  • 송오성;이기영;이정임
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.27-30
    • /
    • 2003
  • Amethyst is a precious stone in Korea. As natural quartz are usually mixed with smoky quartz, amethyst, and milky quartz, we need to evaluate the amount of the amethyst quantitatively in ores. Although the optical evaluation with bare eyes has been common in assay so far, we propose that the diamagnetic property and microstructural difference characterization be the solution for the evaluating the quartz ores. In addition, FTIR (Fourier transformation infra-red) could help to identify the amethyst transparency. We report that we could evaluate the amethyst quantitatively with M-H hysteresis characterization, transmission electron microscopy (TEM) observation and FTIR characterization.

  • PDF

Sintering Behavior of the Net-shaped Fe-8wt%Ni Nanoalloy Powder and Related Mechanical Property

  • Cha, Berm-Ha;Kang, Yun-Sung;Lee, Sung-Ho;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.501-502
    • /
    • 2006
  • The present investigation has been performed on full densification behavior and mechanical property of the powder injection molded Fe-8wt%Ni nanoalloy powder. The net shaping process of the nanopowder was conducted by powder injection molding (PIM) process. The key-process for fabricating fully densified net-shaped nanopowder by pressureless sintering is an optimal control of agglomerate size of nanopowder. Enhanced mechanical property of PIMed Fe-Ni nanopowder is explained by grain refinement and microstructural uniformity.

  • PDF

Microstructural Evolution and Magnetic Property of Creep-Fatigued Ferritic 9Cr Heat-Resisting Steel (크리프-피로 손상된 페라이트기 9Cr 내열강의 미세조직 발달과 자기적 특성)

  • Kim, Chung-Seok;Kwun, S.I.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.417-425
    • /
    • 2007
  • The ferritic 9Cr-1Mo-V-Nb heat-resisting steel was experimentally studied in order to characterize its microstructural evolution during creep-fatigue by coercivity measurement. The creep-fatigue test was conducted at $550\;^{\circ}C$ with the tensile holding time of 60s and 600s, respectively. The coercivity decreased until the failure and the hardness monotonously decreased for the whole fatigue life. As the life fraction of creep-fatigue increased, the $M_{23}C_6$ carbide coarsened following the Ostwald ripening mechanism. However, the MX carbonitrides did not grow during creep-fatigue due to so stable at $550\;^{\circ}C$. The width of martensite lath increased because of the dislocation recovery at the lath boundaries. The magnetic coercivity has an influence on the microstructural properties such as dislocation, precipitates and martensite lath boundaries, which interpreted in relation to microstructural changes. Consequently, this study proposes a magnetic coercivity to quantify the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.

Microstructure and Mechanical Properties of High Strength and Stretch-Flangeability Hot-Rolled Steels (고강도-신장플랜지성 열연강의 미세조직 및 기계적 성질)

  • Chun, Eun-Joon;Lee, Ju-Seung;Do, Hyeong-Hyeop;Kim, Seong-Ju;Park, Yong-Ho;Kang, Nam-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • Research into the development of high strength (1 GPa) and superior formability, such as total elongation (10%), and stretch-flangeability (50%) in hot-rolled steel was conducted with a thermomechanically controlled hot-rolling process. To improve the overall mechanical properties simultaneously, low-carbon steel using precipitation hardening of Ti-Nb-V multimicroalloying elements was employed. And, ideal microstructural characteristics for the realization of balanced mechanical properties were determined using SEM, EBSD, and TEM analyses. The developed steel, 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V), consisted of ferrite as the matrix phase and second phase of granular bainite with fine carbides (20-50 nm) in both phases. The significant factor of the microstructural characteristics that affect stretch-flangeability was found to be the microstructural homogeneity. The microstructural homogeneity, manifest in such characteristics as low localization of plastic strain and internally stored energy, was identified by grain average misorientation method, analyzed by electron backscattered diffraction (EBSD) and hardness deviation between the phases. In summar, a hot-rolled steel having a composition 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V) demonstrated a tensile strength of 998 MPa, a total elongation of 19%, and a hole expansion ratio of 65%. The most important factors to satisfy the mechanical property were the presence of fine carbides and the microstructural homogeneity, which provided low hardness deviation between the phases.

A study on the change of microstructural and mechanical properties by the long-term thermal aging of dissimilar metal welds in nuclear power plants (원전 이종금속 용접부의 장기 열적 시효에 따른 미세조직 및 기계적 특성변화에 관한 고찰)

  • Choi, Kyoung Joon;Yoo, Seung Chang;Kim, Ji Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • In this study, the metallurgical analysis and mechanical property measurement have been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at $450^{\circ}C$ for 2,750 hours. The microstructural characterization was conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy. And the mechanical properties were measured with Vickers microhardness test and nanoindentation method. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. Type-II boundaries were found in weld side of DMW and the hardness was the highest at the narrow zone between Type-II boundary and fusion boundary.

The Effect of Ca Addition on Electrochemical Properties of Mg-alloy by Casting (주조법에 의해 제조된 마그네슘 합금에서 칼슘 첨가가 전기화학적 특성에 미치는 영향)

  • Kim, Hye-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.1
    • /
    • pp.120-124
    • /
    • 2002
  • It is the purpose of the present to report result of a preliminary electrochemical characterization of the as-cast Mg-Ca alloys. Electrochemical data will be correlated with chemical composition of impurities, and the microstructural change before and after Ca is added. This paper shows that small addition of Ca imparts beneficial effect in electrochemical properties of Mg alloy, primarily, through microstructural modifications.

  • PDF

Microstructure and Properties of Nano-Sized Ni-Fe Alloy Dispersed Al2O3 Composites (Ni-Fe 합금입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • 남궁석;정재영;오승탁;이재성;이홍재;정영근
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.161-166
    • /
    • 2002
  • Processing and properties of $Al_2O_3$ composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of $Al_2O_3$/Ni-Fe alloy were prepared by the solution-chemistry route using $Al_2O_3$, $Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on $Al_2O_3$ powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics.

Microstructure and Mechanical Properties of Nanocrystalline TiN Films Through Increasing Substrate Bias (기판 바이어스 인가에 따른 나노결정질 TiN 코팅 막의 미세구조와 기계적 성질변화)

  • Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.479-484
    • /
    • 2010
  • Microstructural and mechanical properties of the TiN films deposited on Si substrates under various substrate bias voltages by a reactive magnetron sputtering have been studied. It was found that the crystallographic texture, microstructural morphology and mechanical property of the TiN films were strongly depended on the substrate bias voltage. TiN films deposited without bias exhibited a mixed (200)-(111) texture with a strong (200) texture, which subsequently changed to a strong (111) texture with increasing bias voltage. It is also observed that the crystallite size decreases with increasing bias voltage, which corresponds to the increasing diffraction peak width of XRD patterns. The average surface roughness was calculated from AFM images of the films; these results indicated that the average surface roughness was increased with an increase in the bias voltage of the coatings.