• Title/Summary/Keyword: Microstructural evolution

Search Result 316, Processing Time 0.023 seconds

Influence of Hot Isostatic Press on Quasi-static and Dynamic Mechanical Properties of SLM-printed Ti-6Al-4V Alloy (SLM 방식으로 적층 제조된 Ti-6Al-4V 합금의 HIP 처리에 따른 준정적 및 동적 기계적 특성 변화)

  • Jang, Ji-Hoon;Choi, Young-Sin;Kim, Hyeoung-Kyun;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.99-106
    • /
    • 2020
  • Selective laser melting (SLM) is an additive manufacturing process by melting metallic powders and stacking into layers, and can product complex shapes or near-net-shape (NNS) that are difficult to product by conventional processes. Also, SLM process is able to raise the efficiency of production by creating a streamlined manufacturing process. For manufacturing in SLM process using Ti-6Al-4V powder, analysis of microstructural evolution and evaluation of mechanical properties are essential because of rapid melting and solidification process of powders according to high laser power and rapid scan speed. In addition, it requires a post-processing because the soundness and mechanical properties are degraded by defects such as pore, un-melted powder, lack-of-fusion, etc. In this study, hot isostatic press (HIP) was conducted as a post-processing on SLM-printed Ti-6Al-4V alloy. Microstructure of post-processed Ti-6Al-4V alloy was compared to as-built Ti-6Al-4V, and the evolution of quasi-static (Vickers hardness, room temperature tensile characteristic) and dynamic (high-cycle fatigue characteristic) mechanical properties were analyzed.

Microstructural Evolution in the Unidirectional Heat Treatment of Cu-35%Sn Alloys (Cu-35%Sn 합금의 일방향 열처리에서 출현하는 미세조직)

  • Choi, K.J.;Jee, T.G.;Park, J.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.320-328
    • /
    • 2003
  • A specimen of Cu-35%Sn alloy has been subjected to the unidirectional heat treatment in an attempt to examine the evolution of microstructures under varying thermal conditions. The specimen was cast in the form of a cylinder 10 mm in diameter and 200 mm in length, which was then installed in the temperature gradient field established inside a vertical tube furnace. The furnace temperature was adjusted to make the upper part at $750^{\circ}C$ and bottom end part at $300^{\circ}C$ of the specimen. The experiment was terminated by dropping it into water after the 30 minutes holding at given temperature. By the rapid cooling, the high temperature phases, ${\gamma}$ and ${\zeta}$, were retained at ambient temperature with some of ${\gamma}$ phase transformed to ${\varepsilon}$ phase, especially at the grain boundaries of ${\gamma}$ phase. The presence of ${\varepsilon}$ phase was found to determine the nature of phase transformations of the ${\zeta}$ phase undergoes upon cooling. In the close area of the ${\varepsilon}$ phase, ${\varepsilon}$ phase grew separately out of ${\zeta}$, and adds to the preexisting ${\varepsilon}$ whereas in areas away from ${\varepsilon}$, both ${\delta}$ and ${\varepsilon}$ grew simultaneously out of ${\zeta}$, and formed a lamella eutectoid structure. The transformation to ${\delta}$ was found to occur only in slow cooling. The hardness on each phase showed that the retained phases, ${\gamma}$ and ${\zeta}$, could be plastically deformed without brittle fracture while the phases, ${\varepsilon}$ and ${\delta}$, were too brittle to be deformed.

A Study on Microstructural Evolution of Hot Rolled AZ31 Magnesium Alloy Sheets (열간 압연한 AZ31 마그네슘합금 판재의 미세조직 발달에 관한 연구)

  • Kim S. H.;Yim C. D.;You B. S.;Seo Y. M.;Chung I. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.63-71
    • /
    • 2004
  • Recently, a sheet forming process of Mg alloys is highlighted again due to increasing demand for Mg wrought alloys in the applications of casings of mobile electronics and outer-skins of light-weight transportation. Microstructure control is essential for the enhancement of workability and formability of Mg alloy sheets. In this research, AZ31 Mg alloy sheets were prepared by hot rolling process and the rolling condition dependency of the microstructure and texture evolution was studied by employing a conventional rolling mill as well as an asymmetric rolling mill. When rolled through multiple passes with a small reduction per pass, fine-grained and homogeneous microstructure evolved by repetitive dynamic and static recrystallization. With higher rolling temperature, dynamic recrystallization was initiated in lower reduction. However with increasing reduction per pass, deformation was locallized in band-like regions, which provided favorable nucleation sites f3r dynamic recrystallization. Through post annealing process, the microstructures could be transformed to more equiaxed and homogeneous grain structures. Textures of the rolled sheets were characterized by $\{0002\}$ basal plane textures and retained even after post annealing. On the other hand, asymmetrically rolled and subsequently annealed sheets exhibited unique annealing texture, where $\{0002\}$ orientation was rotated to some extent to the rolling direction and its intensity was reduced.

  • PDF

Effect of Plasma Oxidation lime on TMR Devices of CoFe/AlO/CoFe/NiFe Structure (절연막층의 플라즈마 산화시간에 따른 CoFe/AlO/CoFe/NiFe 구조의 터널자기저항 효과 연구)

  • 이영민;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.373-379
    • /
    • 2002
  • We investigated the evolution of magnetoresistance and magnetic property of tunneling magnetoresistive(TMR) device with microstructure and plasma oxidation time. TMR devices have potential applications for non volatile MRAM and high density HDD reading head. We prepared the tunnel magnetoresistance(TMR) devices of Ta($50{\AA}$)/NiFe($50{\AA}$)/IrMn($150{\AA}$)/CoFe($50{\AA}$)/Al($13{\AA}$)-O/CoFe($40{\AA}$)/FiFe($400{\AA}$)/Ta(($50{\AA}$) structure which have $100{\times}100\mu\textrm{m}^2$ junction area on $2.5{\times}2.5\textrm{cm}^2$ Si/$SiO_2$(($1000{\AA}$) substrates by an inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using an ICP plasma oxidation method by with various oxidation time from 30 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We found that the oxidized sample for oxidation time of 80 sec showed the highest MR radio of 30.31 %, while the calculated value regarding inhomogeneous current effect indicated 25.18 %. We used transmission electron microscope(TEM) to investigate microstructural evolution of insulating layer. Comparing the cross-sectional TEM images at oxidation time of 150 sec and 360 sec, we found that the thickness and thickness variation of 360 sec-oxidized insulating layer became 30% and 40% larger than those of 150 sec-oxidized layer, repectively. Therefore, our results imply that increase of thickness variation with oxidation time may be one of the major treasons of the MR decrease.

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek;Bada Lee;Jeong Hoon Rhee;Yejin Kim;Hyoeun Kim;Seung Kwan Hong;Goangseup Zi;Gun Kim;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.399-407
    • /
    • 2024
  • This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.

Effect of Substrate Rotation on the Phase Evolution and Microstructure of 8YSZ Coatings Fabricated by EB-PVD

  • Park, Chanyoung;Choi, Seona;Chae, Jungmin;Kim, Seongwon;Kim, Hyungtae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The effect of substrate rotation speed on the phase forming behavior and microstructural variation of 8 wt% yttria ($Y_2O_3$) stabilized $ZrO_2$ (8YSZ) coatings as a thermal barrier coating has been investigated. 8YSZ coatings with $100{\sim}200{\mu}m$ thickness were deposited by electron beam-physical vapor deposition onto a super alloy (Ni-Cr-Co-Al) substrate with a bond coating (NiCo-CrAlY). The width of the columnar grains of the 8YSZ coatings increased with increasing substrate rotation speed from 1 to 30 rpm at a substrate temperature range of $900{\sim}950^{\circ}C$. In spite of the different growth behaviors of coatings with different substrate rotation speeds, the phases of each coating were not changed remarkably. Even after post heat treatments with various conditions of the coated specimens fabricated at 20 rpm, only a change of color was noticeable, without any remarkable change in the phase or microstructure.

A Morphological Study on the Titanium-Oxide Foams Processed Using Freeze-Casting (동결 주조법으로 제조된 티타늄 옥사이드 폼의 구조 연구)

  • Yoon, Hyunjung;Choe, Heeman;Choi, Hyelim
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.427-431
    • /
    • 2012
  • The $TiO_2$ foam synthesized using freeze-casting is a promising photocatalyst and photovoltaic electrode for a variety of energy applications, because the freeze-casting technique is easy to use, cheap, and suitable for mass-production. Despite its several advantages, little scientific information is available on the processing and morphology of the $TiO_2$ foams processed by freeze-casting. In particular, no systematic study has been performed on the microstructural evolution and morphological change of the rutile-phase $TiO_2$ foams during sintering. Therefore, in the present study, several $TiO_2$ foam samples were produced using the freeze-casting technique, which were then sintered at a relatively high temperature of $1200^{\circ}C$ for 1, 2, and 4 h to compare the morphological changes in the microstructure and to understand the effects of processing parameters of the rutile-phase $TiO_2$ foams. The foam ligament size increased near linearly with increasing sintering time whereas the average pore size decreased only slightly with increasing sintering time, with changes in particle morphology from sphere to rod and complete phase transformation from anatase to rutile.

Corrosion Behavior of Solution-Treated Mg-8%Al-X%Zn Casting Alloys (용체화처리된 주조용 Mg-8%Al-X%Zn 합금의 부식 거동)

  • Jun, Joong-Hwan;Hwang, In-Je
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.3
    • /
    • pp.126-133
    • /
    • 2015
  • The aim of this study is to investigate the effect of solution treatment on the corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys in 1M NaCl aqueous solution. After the solution treatment, all alloys showed single ${\alpha}$-(Mg) phase microstructure by dissolution of ${\beta}(Mg_{17}Al_{12})$ phase into the ${\alpha}$-(Mg) matrix. The $H_2$ evolution volume decreased with an increase in Zn content, which indicates that the addition of Zn plays a beneficial role in decreasing corrosion rate of the Mg-Al-Zn alloy in solution-treated state. The microstructural evaluations on the corrosion products and corroded surfaces after the immersion test in 1 M NaCl solution revealed that the incorporation of more $Al_2O_3$ and ZnO into the corrosion product, by which the penetration of $Cl^-$ ions is impeded, are thought to be responsible for the better corrosion resistance in relation with the Zn addition.

Electron Beam Weld ability of Alloy 718 Nozzle for Jet Propulsion Component (고속 추진체용 Alloy 718 노즐 단조품의 전자빔 용접성 평가)

  • Lee, C.H.;Kim, J.H.;Hong, J.K.;Yeom, J.T.;Yoon, J.W.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.523-527
    • /
    • 2008
  • In this study, mechanical properties of Alloy 718 welded after forgings for jet propulsion component was investigated. Hot-forged and machined work-pieces($230mm\times70mm\times15mm$) which have different grain sizes are welded by electron beam welding technique. After welding, the components were solution heat-treated and aged. Samples were sectioned to analyze the microstructural evolution and formation of micro-crack. It was found that HAZ grain boundary liquation crack generally initiates in the coarse grains rather than the fine grains. Needle-like phases with high Nb contents were found at the outer part near the base metal. Vickers hardness and tensile tests were carried out at room temperature and at $649^{\circ}C$. The tensile properties of electron beam welding specimens exhibited around 100MPa and 10% decrease in strength and elongation, respectively.

Synthesis and Their Properties of (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass Composites by Sol-Gel Process (Sol-Gel법을 이용한 (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass 복합체의 합성과 그 특성)

  • 이병우;김병호;윤영권;한원택
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.993-1001
    • /
    • 1997
  • The (0.8PPV+0.2DMPPV) copolymer and silica/borosilicate composites were synthesized by sol-gel process. The organic-inorganic hybrid solution was prepared by using of (0.8PPV+0.2DMPPV) copolymer precursor solution as a raw material for organic components and TEOS and TMB for glass components. Then by drying the solution in vacuum at 5$0^{\circ}C$ for 7days and subsequent heat treatment in vacuum at 15$0^{\circ}C$~30$0^{\circ}C$ for 2h~72h with heating rate of 0.2$^{\circ}C$/min and 1.8$^{\circ}C$/min, the organic-inorganic composites were synthesized. Microstructural evolution of the composites was characterized by DSC, IR spectrocopy, UV/VIS spectroscopy, and TEM. Elimination of the polymer precursor and degradation of the polymer were observed by DSC and Si-O and trans C=C absorption peaks were identified by IR spectra. The polymer was found to be successfully incorporated into the glass matrix and it was confirmed by the absorption peaks from the polymer in the UV/VIS spectra and the TEM results. The absorption peak of the composites was found to shift toward short wavelength side compared to that of the pure polymer and the amount of the blue shift increased with increasing the heat treatment temperature and heat treatment time and with decreasing the heating rate.

  • PDF