• 제목/요약/키워드: Microstructural defects

검색결과 78건 처리시간 0.021초

Optical and Structural Properties of Emerging Dilute III-V Bismides

  • Santos, B.H. Bononi Dos;Gobatoa, Y. Galvao;Heninib, M.
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.211-220
    • /
    • 2014
  • In this paper, we present a review of optical and structural studies of $GaBi_xAs_{1-x}$ epilayers grown by Molecular Beam Epitaxy (MBE) on (311)B and (001) GaAs substrates with different As fluxes. The results indicate that under near-stoichiometric conditions the bismuth incorporation is higher for samples grown on (311)B GaAs substrates than for those grown on (001) GaAs. In addition, carrier localization effects in GaBiAs layers are clearly revealed for both samples by optical measurements. The (311)B samples showed evidence of higher density of defects. It has also been found that the nonradiative centers play a significant role in the recombination process in this material system. The influence of post-growth annealing on the microstructural, optical, and magneto-optical properties was also investigated. An important improvement of optical and spin properties after thermal annealing due to the reduction of defects in the GaBiAs layers was observed.

미세구조 분석을 이용한 저밀도 결함을 가진 GaN계 반도체 연구 (The study of GaN-based semiconductors with low-defect density by microstructural characterization)

  • 조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.424-427
    • /
    • 2003
  • We have investigated the microstructural analysis of epitaxial lateral overgrowth (ELO), pendeoepitaxy (PE), and superlattice structures used as technology for the reduction of structural defects like dislocation in nitride semiconductors using transmission electron microscopy. We confirmed that the regrowth process such as ELO and PE is very effective technique on the reduction of threading dislocation (less than $10^6/cm^2$) in the specific area. However, to decrease the defect density in the whole nitride films and the suppress the generation of defect by regrowth, we should find the optimized conditions. Besides, the process using double PE and AlGaN/GaN superlattice structure showed no effect on the defect reduction up to now.

  • PDF

Microstructural Evolution and Recrystallization Behavior Traced by Electron Channeling Contrast Imaging

  • Oh, Jin-Su;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • 제48권4호
    • /
    • pp.130-131
    • /
    • 2018
  • Electron channeling contrast imaging (ECCI) is one of the imaging techniques in scanning electron microscopy based on a variation in electron backscattering yield depending on the direction of the primary electron beam with respect to the crystal lattice. The ECCI provides not only observation of the distribution of individual grains and grain boundaries but also identification of the defects such as dislocations, twins, and stacking faults. The ECCI at the interface between recrystallized and deformed region of shot peening treated nickel clearly demonstrates the microstructural evolution during the recrystallization including original grain boundaries, and thus can provide better insight into the recrystallization behavior.

양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향 (Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel)

  • 임연수;김동진;황성식;최민재;조성환
    • Corrosion Science and Technology
    • /
    • 제20권3호
    • /
    • pp.158-168
    • /
    • 2021
  • Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.

Microstructural Analysis of Directionally Solidified Materials Obtained via Line-Scan SLS of Si Films

  • Chung, U.J.;Limanov, A.B.;Wilt, P.C. Van Der;Chitu, A.M.;Im, James S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1744-1749
    • /
    • 2006
  • Line-scan SLS of thin Si films permits the attainment of low-defect-density Si films with a directionally solidified microstructure. This paper deals with: (1) identifying and examining the structural defects that are found in the resultant material, (2) how the spatial variations in the type and density of the observed defects may potentially affect the overall uniformity of the resulting devices, and (3) some technical options that may be applied in order to potentially alleviate the situation.

  • PDF

기계적 합금법으로 제조된 MA754 산화물 분산강화 합금의 마찰압접에 관한 연구 (Friction Welding of MA754 ODS Alloy Produced by Mechanical Alloying)

  • 강지훈
    • 한국분말재료학회지
    • /
    • 제1권2호
    • /
    • pp.198-207
    • /
    • 1994
  • In order to find an optimal friction-welding condition for Ni-base ODS alloy (MA 754) produced by mechanical alloying, joint experiments were performed with various conditions of friction pressures (50~500 MPa), friction times (1~5 sec) and upset pressures (50~600 MPa). The optimal friction pressure and upset pressure must be above 400 MPa and 500 MPa, respectively, which are determined by tensile strengths and fracture features of as-welded joints. A maximum stress설h of 975 MPa could be obtained under these pressure conditions at friction time of 2 sec. Microstructural features of bonded interface by optical microscope and SEM revealed that the interface regions of all specimens are consisted with three distinct regions and defects such as voids, cracks and wavy interfaces exist in the joints produced under not-optimized conditions. EDS results showed that these defects include oxides composed with elements of Al, Y and Ti. The hardness on the bonded interface was higher than in the base metal region. Specimens fractured in bonded interface region had lower strength values compared to those fractured in base metal region. Surfaces of the former showed a typical intergranular fracture.

  • PDF

Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices

  • Park, Seong-Yong;Lee, Tae-Hun;Kim, Moon-J.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.49-53
    • /
    • 2010
  • Microstructural origins of leakage current and physical degradation during operation in product-quality AlGaN/GaN high electron mobility transistor (HEMT) devices were investigated using photon emission microscopy (PEM) and transmission electron microscopy (TEM). AlGaN/GaN HEMTs were fabricated with metal organic chemical vapor deposition on semi-insulating SiC substrates. Photon emission irregularity, which is indicative of gate leakage current, was measured by PEM. Site specific TEM analysis assisted by a focused ion beam revealed the presence of threading dislocations in the channel below the gate at the position showing strong photon emissions. Observation of electrically degraded devices after life tests revealed crack/pit shaped defects next to the drain in the top AlGaN layer. The morphology of the defects was three-dimensionally investigated via electron tomography.

Trends in Materials Modeling and Computation for Metal Additive Manufacturing

  • Seoyeon Jeon;Hyunjoo Choi
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.213-219
    • /
    • 2024
  • Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.

중성자 조사재의 미세구조 설계와 모델링 (A Microstructural Design and Modeling of Neutron-Irradiated Materials)

  • 장근옥
    • 공업화학
    • /
    • 제31권4호
    • /
    • pp.347-351
    • /
    • 2020
  • 재료는 방사선과 상호작용을 통해 그 물리적, 화학적 특성이 변화하며 여러 방사선 중에서 전하를 띄고 있지 않아 침투깊이가 깊은 중성자 조사에 의한 금속소재의 조사손상은 원자력발전소의 안전과 관련해서 오랜 기간 동안 집중적인 연구대상이었다. 중성자 조사에 의한 조사손상은 초반 피코 초 스케일에서 벌어지는 원자단위의 점결함의 생성으로 시작되며 그 이후의 전개 양상은 전위 고리나 공극과 같은 미세구조상 결함으로 확인될 수 있다. 이러한 미세구조 상 결함의 형상과 분포에 따라 소재의 특성에 미치는 효과는 상이하게 된다. 그러므로 중성자 조건에 따른 미세구조를 예측하는 것은 매우 중요한 일로, 본 논문에서는 중성자 조사에 의한 재료 내의 미세구조 발달에 대해 리뷰한 뒤 조사된 소재의 미세구조 변화 예측에 널리 사용될 수 있는 상장 모델에 대해 간략히 소개하였다.

열처리에 따른 미세구조 변화가 Ti 판재의 부식특성에 미치는 영향 (The Effect of Microstructural Evolution on Corrosion Property of Ti Plate with Heat Treatment)

  • 김민규;이찬수;김태규;김혜성
    • 열처리공학회지
    • /
    • 제31권1호
    • /
    • pp.12-17
    • /
    • 2018
  • We investigated the corrosion behavior of commercially pure cold working processed (CP)-Ti with coarse-grained (CG) microstructure heat-treated at $400^{\circ}C$ and $600^{\circ}C$, respectively. It is observed that corrosion resistance of as-received CP-Ti heat-treated at $400^{\circ}C$, at which recrystallization proceeds, is largely improved. Interestingly, the mechanical property of CP-Ti sample at $400^{\circ}C$ was scarcely deteriorated. It is attributed to the decrease of the defects such as strain variance and dislocation density. On the other hand, the annealing treatment at $600^{\circ}C$ of CP-Ti plate causes to grain growth with the noticeable reduction of mechanical property. Hence, it is considered that defect density such as strain and dislocation density is important microstructural parameter for the improvement of corrosion resistance. The introduction of proper annealing treatment can help to improve corrosion resistance without scarifying mechanical property of CP-Ti.