• 제목/요약/키워드: Microstructural control

검색결과 129건 처리시간 0.025초

반복압출 공정을 이용한 금속분말의 미세조직 제어 (Microstructure Control of Mg Alloy Powder Using a Repeated Extrusion Process)

  • 김정곤;최한신;김택수
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.438-441
    • /
    • 2009
  • Mg-Cu composites were successively fabricated using a combination of rapid solidification and extrusion processes. In addition, the microstructural variation of the composite was investigated by performing the extrusion repeatedly. It resulted that the composite formed an uniform and dense structure by the extrusion, and the microstructure became fine as the extrusion conducted repeatedly. The microstructural variation was known to be dependent on the number of extrusion and the area reduction ratio. The tensile strength was also measured as a function of the microstructural variation.

금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구 (A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of a Die Steel)

  • 정호승;조종래;차도진;배원병
    • 소성∙가공
    • /
    • 제10권4호
    • /
    • pp.338-346
    • /
    • 2001
  • Evaluation of microstructural changes is important for process control during open die forging of heavy ingots. The control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects and to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent Precesses of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구 (A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of Die Steels)

  • 정호승;조종래;차도진;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.131-135
    • /
    • 2001
  • Evaluation of microstructural changes during open die forging of heavy ingots is important for process control. The objective of the control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects md to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent processes of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

반용융 압출을 위한 AA7075 합금의 조직제어 (Microstructural Control of AA7075 Alloy for Thixoextrusion)

  • 윤영옥;김영직;김세광;조형호
    • 한국주조공학회지
    • /
    • 제25권6호
    • /
    • pp.249-253
    • /
    • 2005
  • The present study focuses on 7075 aluminum wrought alloy to investigate the potential industrial applications of thixoextrusion process. The microstructural evolution of 7075 aluminum wrought alloy for thixoextrusion has been investigated as a function of isothermal holding temperature and time in the partially remelted semisolid state. The results showed that the liquid fraction increased with increasing isothermal holding temperature and time while the average grain size was inversely proportional to isothermal holding temperature and time up to 5min. However, there was no big change of liquid fraction and average grain size with respect to isothermal holding temperature and time. The important fact that the liquid fraction and average grain size were almost uniform after 5 min holding time is considered very useful for thixoextrusion in terms of process control.

고온 성형에 있어서 재결정 거동 예측 프로그램 개발 및 적용 (Development of a Program to Predict Recrystallizaion Behavior in the Hot Forming Process and Its Application)

  • 이광오;강종훈;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.136-142
    • /
    • 2001
  • Recently, a much amount of attention has been paid not only to produce products with precise dimensional accuracy, but also to predict and control the microstructural evolution and mechanical properties of parts. Especially, to do the latter through computer simulation, the history of states factors influencing on these evolution such as temperature, strain, strain rate etc., should be calculated and a appropriate mathematical models for the prediction of microstructural evolution must be developed. Thus, in this study thermo-viscoplastic finite element program including the model for predicting microstructural has been developed. Also for the verification of developed program warm forging process for the rotor pole was simulated and the comparison between the results calculated and ones in the literature was made.

  • PDF

MICROSTRUCTURAL CHARACTERISTICS OF HOT FORGED AL 6061 ALLOY

  • Kwon Y.-N.;Lee Y.-S.;Lee J.-H.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.55-58
    • /
    • 2003
  • Many researches have been already done on the issues of high temperature deformation and the microstructural evolution. The information has been very useful for the plasticity industry, especially successful for the extrusion. However, the parts made with forging usually have a complex shape. It is difficult to control the distribution of the variables like strain, strain rate and temperature rise due to the working heat during a hot-forging process. Consequently, the microstructural variation could be occurred depending on the plastic deformation history that the forged part would get during a hot forging. In the present study, the microstructural characteristic of a hot-forged 6061 aluminum alloy has been discussed on the aspect of grain size evolution. A forging of 6061 aluminum alloy has been carried out for a complex shape with a dimensional variation. Also, finite element analysis has been done to understand how the deformation variables such as strain, strain rate give an influence on the microstructure of a hot forged aluminum product.

  • PDF

니켈기 초내열 713LC 합금의 고온 기계적 특성 (High Temperature Mechanical Properties of 713LC Ni-based Superalloy)

  • 나영상;김종엽;이종훈;박노광
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.167-174
    • /
    • 2003
  • Alloy 713LC was developed to improve the tensile strength and ductility by reducing the carbon content of Alloy 713C. As Alloy 713LC was designed to minimize the mechanical property change with process conditions, it is generally utilized in the parts which have thick and thin sections simultaneously. In the thick and the thin sections, quite different properties are required. Consequently it is essential to crucially control the local mechanical properties of a parts by optimizing the process condition and heat treatment. In this research, high temperature mechanical properties including creep-rupture and strain-control low cycle fatigue were investigated together with the microstructural variations with heat treatment. Failure mechanism was also analyzed by observing the fracture surface to correlate the variation of mechanical properties with the microstructural change.

  • PDF

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권1호
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

경량합금 반용융 압출 기술 개발 - Part 1. 반융용 압출을 위한 조직제어 (Development of Thixoextrusion Process for Light Alloys - Part 1. Microstructural Control of Light Alloys for Thixoextrusion)

  • 김세광;윤영옥;장동인;조형호
    • 한국주조공학회지
    • /
    • 제26권5호
    • /
    • pp.211-216
    • /
    • 2006
  • The study for thixoextrusion process of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy was carried out with respect to reheating rate, isothermal holding temperature and time with an emphasis to the effect of homogenization on thixotropic micro-structures during the partial remelting, especially in the low liquid fraction ($f_L<0.2$). The liquid fraction and average grain size with respect to reheating profile such as reheating rate, isothermal holding temperature and time were almost uniform. It is considered very useful for thixoextrusion in terms of process control such as billet temperature control and actual extrusion time. Micro-structural controls of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy before and after homogenization were available and thixotropic microstructures were obtained in both specimens.