• Title/Summary/Keyword: Microstructural Observation

Search Result 185, Processing Time 0.042 seconds

Failure Analysis of the Carburized Engine Parts by Microstructural Observation (침탄처리된 엔진 부품의 미세조직학적 파손원인 분석)

  • Sohn, Kyong-Suk;Lee, Sang-Kee;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2005
  • Failure cause of the fractured engine parts was analyzed by microstructural observation. These parts were failed far earlier than the expected service life. By the stereoscope and SEM examinations of the fractured surface, the fracture modes have been identified as wear and fatigue failure. From the observation of microstructure and microhardness measurements of the failed gears, the probable cause for failures are internal oxidation during using and retained austenite and carbide networks due to heat-treatment, respectively. These defected structures at near surface contributed to the wear and fatigue failure.

R-Curve Behavior in a Gas-Pressure Sintered Silicon Nitride (가스압 소결된 질화규소의 R-Curve 거동)

  • 김상섭;김성진;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.949-955
    • /
    • 1992
  • R-curves, fracture resistance (KR) as a function of crack extension (Δa), of a gas-pressure sintered monolithic Si3N4 were determined by controlled flaw/strength technique. Rising R-curve behavior was observed, confirming the operation of microstructural toughening process during crack growth. The R-curve parameters, k and m in the equation, KR=k(Δa)m, were determined to 30.301 and 0.1146, respectively. Microstructural observation of growing crack revealed that the bridging in the crack wake by unbroken ligament of large elongated ${\beta}$-grains was the mechanism primarily for the rising R-curve behavior.

  • PDF

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet (변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구)

  • Kim, D.O.;Kang, C.W.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

Microstructural Observation of Phase Change Optical Disk by TEM (투과전자현미경을 이용한 상전이형 광디스크의 미세조직 관찰)

  • Kim, Soo-Chul;Kim, Gyeung-Ho
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.493-498
    • /
    • 1999
  • With increasing demand for fast and reliable, yet economical data storage devices, the role of optical disk technology is becoming more important. In recent years, advanced laser technology combined with new materials has given the competitive edge over the traditional magnetic memory devices both in memory capacity and reliability of data retrieval. Continuing effort is being put into developing smaller and more complex structures for optical disks to increase their memory density. Characterization of such multilayered structure requires not only high spatial resolution for observation but also laborious specimen preparation. In this paper, the method of preparing optical disk specimens for TEM characterization is described in detail. The microstructural features in optical disks observed by TEM are also discussed.

  • PDF

Micro-Hardnesses and Microstructural Characteristics of Surface Layer of 590MPa DP Steels According to Hydrogen Charging (수소주입에 따른 590 MPa급 DP강 표면층의 미소경도와 조직특성)

  • Kang, Kae-Myung;Park, Jae-Woo
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.581-585
    • /
    • 2010
  • High strength sheet steels for automobile are seriously compromised by hydrogen embrittlement. This issue has been continuously studied, but the field of interest, which lies between microstructural characteristics and hydrogen behavior with hydrogen charging, has not yet been thoroughly investigated. This study was done to investigate the behavior of hydrogen according to the hydrogen volume fraction on 590MPa grade DP steels, which are developed under hydrogen charging conditions as high strength sheet steels for automobiles. The penetration depths and the mechanical properties, according to charging conditions, were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. It was found that the amount of hydrogen trapping in 590MPa DP steels was related to the austenite volume fraction. It was confirmed that the distribution of micro-hardnesses according to the depth of the subsurface zone under the free surface showed the relationship of the depth of the hydrogen saturation between the charging conditions.

Synthesis of SnO2 Powders by Oxidation Heat Treatment of Nano-sized Sn Powders and Their Microstructural Characteristics (나노크기 Sn 분말의 산화열처리에 의한 SnO2분말의 합성 및 미세조직 특성)

  • Oh, Sung-Tag;Lee, Sung-Il;Joo, Yeon-Jun
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.287-291
    • /
    • 2007
  • Oxidation behavior and microstructural characteristics of nano-sized Sn powder were studied. DTA-TG analysis showed that the Sn powder exhibited an endothermic peak at $227^{\circ}C$ and exothermic peak at $560^{\circ}C$ with an increase in weight. Based on the phase diagram consideration of Sn-O system and XRD analysis, it was interpreted that the first peak was for the melting of Sn powder and the second peak resulted from the formation of $SnO_2$ phase. Microstructural observation revealed that the $SnO_2$ powder, heated to $1000^{\circ}C$ under air atmosphere, consisted of agglomerates with large particle size due to the melting of Sn powder during heat treatment. Finally, fine $SnO_2$ powders with an average size of 50nm can be fabricated by controlled heat treatment and ultrasonic milling process.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.