• Title/Summary/Keyword: Microstructrue

Search Result 6, Processing Time 0.016 seconds

Fabrication of Porous TiNi Alloys by Self-propagating High-temperature Synthesis (자전연소반응에 의한 TiNi 다공체 합금 제조에 관한 연구)

  • 이상진;권대환;배승열;안인섭;김유영
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.96-102
    • /
    • 2002
  • In the present study, equiatomic porous TiNi shape-memory alloys have been successfully prepared by self-propagating high-temperature synthesis (SHS) using elemental titanium and nickel powders. The porous TiNi alloys thus obtained have an open porous structure with about 64 vol.% porosity, and the pore size is about 1.8 mm. The effect of preheating temperature on the microstructure have been investigated. It is found that the pore size increases with increasing preheating temperature. Moreover, the preheating temperature was shown to have a significant effect on the microstructrue of the SHS-synthesized porous TiNi shape memory alloys.

Electrical characteristic of RF sputtered TaN thin films with annealing temperature (스퍼터링법으로 제조된 TaN 박막의 열처리 온도에 따른 전기적 물성에 관한 연구)

  • 김인성;송재성;김도한;조영란;허정섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1014-1017
    • /
    • 2001
  • In recent years, The tantalum nitride(TaN) thin-film has been developed for the electronic resistor and capacitor. In this papers, The effect of thermal annealing in the temperature range of 300∼700$^{\circ}C$ on the sheet resistor properties and microistructure of tantalum nitride(TaN) thin-film deposited by RF sputtering was studied. XRD(X-ray diffractometer) and AFM were used to observe electrical properties and microstructrue of the TaN film and sheet resistance. The TCR properties of the TaN films were discussed in terms of annealing temperature, ratio of nitrogen, crystallization and thin films surface morphology due to annealing temperature. The leakage current of the TaN thin film annealed 400 $^{\circ}C$ was stabilized in the study. How its was found that the sheet resistance in the polycrystalline TaN thin film decreased with increasing the annealing temperature above 600 $^{\circ}C$ after sudden peak upen 400 $^{\circ}C$.

  • PDF

Microstructrue and Mechanical Properties of A3003 Aluminium Alloy Welds by Heat-treatment (열처리된 A3003 알루미늄합금 용접부의 미세조직 및 기계적 특성)

  • Lee, Il-Cheon;Song, Yeong-Jong;Gook, Jin-Seon;Yoon, Dong-Joo;Kim, Byung-Il
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.51-57
    • /
    • 2007
  • The present work was aimed to examine the variation of microstructure and mechanical properties by annealing($100{\sim}620^{\circ}C$, $2{\sim}8hr$) in A3003 Al alloy welded pipes. The A3003 Al alloy pipes with 34 mm in external diameter and 1.3 mm in thickness were manufactured by high frequency induction welding with the V shaped convergence angle $6.7^{\circ}$ and power input 50 kW. The tensile and yield strength decreased with increasing the annealing temperature remarkably, but elongation increased remarkably. Vickers hardness in welds decreased with increasing the annealing temperature remarkably. The primary intermetallic compound of $Al_{12}(Fe,\;Mn)_2Si$ was precipitated in welds as the same base metal. In a certain experimental condition, the welds line in A3003 alloys disappeared at $450^{\circ}C$ for 2 hr because of the same mechanical property and structure between welds and base metal.

The Effective $P_2O_5$ Doping into $B_2O_3-P_2O_5-SiO_2$ Silica Layer Fabrication by Flame Hydrolysis Deposition (FHD법에 의한 $B_2O_3-P_2O_5-SiO_2$ 실리카막의 효과적인 $P_2O_5$ 도핑)

  • 심재기;이윤학;성희경;최태구
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.364-370
    • /
    • 1998
  • Boron-phoshor-silicate glass was fabricated on Si substrates by FHD(Flame Hydrolysis Deposition) The microstructrue of silica soot deposited at various conditon such as composition and substrate temperature was analysed by SEM. After consolidation the refractive index and composition of the silica layer were in-vestigated. For refractive index control B, P and Ge were used as additive elements while B and Ge oxides are easily mixed into $SiO_2$, P oxide($B_2O_3$) doping is difficult because of the volatile property due to low melt-ing point. Boron-phosphorous-silicate glass (BPSG) layer were fabricated using bertical torch and optimized flame temperature substrate temperature and distance of torch and substrate. P concentration of BPSG lay-er measured 3.3 Wt% and the consolidation temperature was lower than $1180^{\circ}C$. The measured refractive index of BPSG silica layer in $1.55\;\mu\textrm{m}$ wavelength was $1.4480{\pm}1{\times}10^{-1}$ and the thickness was $22{\pm}1\;\mu\textrm{m}$.

  • PDF

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.