• Title/Summary/Keyword: Microstripline

Search Result 42, Processing Time 0.016 seconds

The Analysis of Wideband Microstrip Slot Antenna with Cross-shaped Feedline (십자형 급전선을 갖는 광대역 마이크로스트립 슬롯 안테나의 특성 분석)

  • Jang, Yong-Ung;Han, Seok-Jin;Sin, Ho-Seop;Kim, Myeong-Gi;Park, Ik-Mo;Sin, Cheol-Je
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.35-42
    • /
    • 2000
  • A cross-shaped microstripline-fed printed slot antenna having wide bandwidth Is presented in this paper. The proposed antenna is analyzed by using the Finite-Difference Time-Domain (FDTD) method. It was found that the bandwidth of the antenna depends highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The maximum bandwidth of this antenna is from 1.975 GHz to 4.725 GHz, which is approximately 1.3 octave, for the VSWR $\leq$ 2. Experimental data for the return loss and the radiation pattern of the antenna are also presented. and they are in good agreement with the FDTD results.e FDTD results.

  • PDF

A Design of MMIC Mixer for I/Q Demodulator of Non-contact Near Field Microwave Probing System (비접촉 마이크로웨이브 프루브 시스템의 I/Q Demodulator를 위한 MMIC Mixer의 설계)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1023-1028
    • /
    • 2012
  • A MMIC (Monolithic Microwave Integrated Circuit) mixer chip using the Schottky diode of an GaAs p-HEMT process has been developed for the I/Q demodulator of non-contact near field microwave probing system. A single balanced mixer type is adopted to achieve simple structure of the I/Q demodulator. A quadrature hybrid coupler and a quarter wavelength transmission line for 180 degree hybrid are realized with lumped elements of MIM capacitor and spiral inductor to reduce the mixer chip size. According to the on-wafer measurement, this MMIC mixer covers RF and LO frequencies of 1650MHz to 2050MHz with flat conversion loss. The MMIC mixer with miniature size of $2.5mm{\times}1.7mm$ demonstrates conversion loss below 12dB for both variations of RF and LO frequencies, LO-to-IF isolation above 43dB and RF-to-IF isolation above 23dB, respectively.