• Title/Summary/Keyword: Microstrip-to-Waveguide Transition

Search Result 43, Processing Time 0.029 seconds

Ultra-Wideband Microstrip-to-Finite Ground Coplanar Waveguide Transition for Millimeter-Wave Systems (밀리미터파 시스템용 초광대역 마이크로스트립-FGCPW 전이구조 설계)

  • Kim, Young-Gon;Kim, Hong-Rak;Jung, Bae-Ho;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.701-708
    • /
    • 2016
  • A new design for an ultra-wideband microstrip-to-FGCPW(Finite Ground Coplanar Waveguide) transition is presented. The proposed transition provides the electric field and impedance matching between adjacent transmission lines by ground shaping. The transition is designed on the analytical expressions of whole transitional structure. Conformal mapping is applied to obtain the characteristic impedance of FGCPW with bottom aperture within 3.3 % accuracy as compared with the EM-simulation results. As design example, the fabricated transition in back-to-back configuration provides insertion loss less than 1 dB per transition and return loss better than 10 dB for frequencies from 9 GHz to over 40 GHz.

A Waveguide-Microstrip Transition using Curvature Variable Taper (곡률 변화형 테이피를 이용한 도파관-마이크로스트립 트랜지션)

  • 차원석;조영송;신철재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.45-52
    • /
    • 1994
  • A curvature variable taper is proposed for a waveguide-microstrip transition. It is applied to a ridge waveguide. The curvature depends on the taper length and difference of waveguide's height and microstrip substrate's height. The taper is manufactured easier than the other tapers. It's reflection coefficient is smaller than the parabolic taper's below one wavelengrh. The results of experiment show that S$_{11}$ is below -20dB and SS$_{21}$ is about -0.5dB in the band of 10~15 GHz. These results are good agreement with the theoritical values.

  • PDF

Design of W-band Microstrip-to-Waveguide Transition Structure Using Fin-line Taper (Fin-line taper를 이용한 W-대역 마이크로스트립-도파관 전이구조 설계)

  • Kim, Young-Gon;Yong, Myung-Hun;Lee, Hyeonkeon;Joo, Ji-Han;An, Se-Hwan;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • A high-performance wideband transition from microstrip to waveguide is proposed. This transition is designed by consideration of gradual field transformation and optimal impedance matching between microstrip line and fin-line. Clear design guidelines of proposed transition using fin-line taper with offset DSPSL (double-sided parallel stripline) are provided to determine the transition shape and the transition length. The fabricated transition exhibits less than 0.67 dB insertion loss per transition for frequencies from 85 to 108 GHz, and less than 1 dB insertion loss from 83 to over 110 GHz. Proposed transition is expected compact radar and various applications.

Characterizations of Moisture-Sealed Waveguide-to-Microstrip Transitions for Ka-band Transceivers

  • Kim, Kang-Wook;Na, Chae-Ho;Woo, Dong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.105-111
    • /
    • 2002
  • New high-performance Ka-band waveguide-to-microstrip transitions for millimeter-wave transceiver applications have been developed and characterized. These transitions are probe-type, but the dielectric material completely covers the whole waveguide aperture, thus providing moisture-barrier and robustness in the probe section. The new probe transitions are also designed to be less sensitive to fabrication tolerances. Further performance enhancements have been obtained by placing vias around the waveguide aperture. Also, the resonance phenomena associated with waveguide wall-penetration have been identified. The developed probe transitions provide insertion loss less than 0.4 dB over entire Ka-band frequencies, but can be optimized for narrowband applications with insertion loss less than 0.2 dB.

Design of 200 GHz Waveguide to Microstrip Transition using Probe Structure (200 GHz 대역 프로브 구조의 구형도파관-마이크로스트립 변환기 설계)

  • Lee, Sang-Jin;Baek, Tae-Jong;Ko, Dong-Sik;Han, Min;Choi, Seok-Gyu;Kim, Jung-Il;Kim, Geun-Ju;Jeon, Seok-Gy;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.47-52
    • /
    • 2012
  • We have designed the waveguide to microstrip transition using a probe structure for the center frequency of 200 GHz transceiver. The waveguide to microstrip transition is composed of probe, taper and microstrip transmission line. For design of the transition, we simulated the lengths and width of the probe and the taper to optimize the center frequency and the bandwidth using HFSS simulation tool from Ansoft. The transition is designed back-to-back structure. From the simulation results, the transition exhibits that insertion loss is below - 0.81 dB and the return loss less than -10 dB in range of 186 ~ 210 GHz.

Design of Compact Q-Band Waveguide-to-Microstrip Transition for UAV Millimeter-Wave Radiometer Applications (무인항공기 밀리미터파 라디오미터 응용을 위한 소형 Q대역 도파관-마이크로스트립 전이구조 설계)

  • Woo, Dong Sik;Jeong, Jong-Hyeog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2018
  • A compact Q-band waveguide-to-microstrip transition for UAV(Unmanned Aerial Vehicle) radiometer applications is presented. The key features of this transition are simplicity, compactness, easy matching, and lower sensitivity to the dimensions and fabrication tolerances. The simple E-plane patch-type design is insensitive to the backshort cavity enclosure and misalignment between the waveguide and microstrip substrate. The primary parameters are optimized using a three-dimensional(3D) electromagnetic simulator(ANSYS HFSS). It exhibited better than 20-dB return loss at mid-band frequencies with less than 1-dB insertion loss for the back-to-back transition, and a return loss better than 15 dB over the frequency range of 36 GHz to 42 GHz.

Simulation for characterization of high speed probe for measurement of single flux quantum circuits (단자속양자 회로 측정프로브의 특성 분석을 위한 시뮬레이션)

  • 김상문;김영환;최종현;조운조;윤기현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.11-15
    • /
    • 2002
  • High speed probe for measurement of sin91e flux quantum circuits is comprised of coaxial cables and microstrip lines in order to carry high speed signals without loss. For the impedance matching between coaxial cable and microstrip line, we have determined the dimension of the microstrip line with 50${\Omega}$ impedance by simulation and then have investigated the effect of line width and cross-sectional shape of signal line, dielectric material, thickness of soldering lead at the coaxial-to-microstrip transition Point, and the an91c between dielectric material and end part of the signal line on the characteristics of signal transmission of the microstrip line. From the simulation, we have found that these all parameter's had influenced on the characteristic of signal transmission on the microstrip line and should be reflected in fabricating high speed probe, We have also determined the dimension of coplanar waveguide to fabricate testing sample for performance test of high speed probe.

A Study on the Development of 38 GHz Hybrid Power Amplifier Module (38 GHz 하이브리드 전력증폭기 모듈 개발에 관한 연구)

  • 윤양훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1701-1706
    • /
    • 2000
  • In this work a 38 GHz hybrid 2-stage power amplifier module using GaAs pHEMTs and waveguide to microstrip transitions has been successfully developed. A 10 mil thickness duroid substrate was use for fabrication of the power amplifier and the waveguide to microstrip transitions. The fabricated waveguide to microstrip transition showed about 1 dB insertion loss(back to back) at 32-40 GHz. The measured results of power amplifier module showed 29 dBm output power(P1.5dB), 7,2 dB associated gain and 11.2% power-added efficiency(PAE) at 36.8-38.5 GHz.

  • PDF

A Study on Waveguide to Microstrip Antipodal Transition for 5G cellular systems (5세대 이동통신 시스템을 위한 도파관-마이크로스트립 앤티포달 변환에 관한 연구)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.185-190
    • /
    • 2015
  • In this paper we characterized and designed the waveguide antipodal finline transition at 57-65GHz frequency band in V-band for 5G mobile communication systems. Especially, we proposed the design method of spline taper for finline tapers by means of increasing curvature from linear taper. We could perform optimization more effectively by excluding improper regions for optimal performance from optimization using the method. Return losses and insertion losses of antipodal finline transitions were mainly affected by the taper shape of the finline. The resonances in the structure of the finline transition were the strongest enemies who deteriorate the performance of the transition. And we alleviated the resonances using semicircle shaped patch. The designed antipodal finline transition showed good performance as it showed less than -24.2dB of return loss and -0.24dB of insertion loss in the band(57-65GHz) which we suppose to use.

Design and Fabrication of Ka-Band Microstrip to Waveguide Transitions Using E-Plane Probes (E-평면 프로브를 이용한 Ka 대역 마이크로스트립-도파관 변환기의 설계 및 제작)

  • Shin, Im-Hyu;Kim, Choul-Young;Lee, Man-Hee;Joo, Ji-Han;Lee, Sang-Joo;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • In this paper, two kinds of E-plane microstrip-to-waveguide transitions are optimally designed and fabricated for combining output power from multiple small-power amplifiers in a WR-28 waveguide because conventional K connectors cause unnecessary insertion loss and adaptor loss. The transition design is based on target specifications such as a center frequency of 35 GHz, bandwidth of ${\pm}500MHz$, 0.1 dB insertion loss and 20 dB return loss. Performance variation caused by mechanical tolerance and assembly deviation is fully evaluated by three dimensional electromagnetic simulation. The fabricated back-to-back transitions with 16 mm and 26.57 mm interstage microstrip lines show insertion loss per transition of ~0.1 dB at 35 GHz and average 0.2 dB over full Ka band. Also the back-to-back transition shows return loss greater than 15 dB, which implies that the transition itself has return loss better than 20 dB.