• Title/Summary/Keyword: Microstrip resonator

Search Result 225, Processing Time 0.024 seconds

Wideband Colpitts Voltage Controlled Oscillator with Nanosecond Startup Time and 28 % Tuning Bandwidth for Bubble-Type Motion Detector (나노초의 발진 기동 시간과 28 %의 튜닝 대역폭을 가지는 버블형 동작감지기용 광대역 콜피츠 전압제어발진기)

  • Shin, Im-Hyu;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1104-1112
    • /
    • 2013
  • This paper presents a wideband Colpitts voltage controlled oscillator(VCO) with nanosecond startup time and a center frequency of 8.35 GHz for a new bubble-type motion detector that has a bubble-layer detection zone at the specific distance from itself. The VCO circuit consists of two parts; one is a negative resistance part with a HEMT device and Colpitts feedback structure and the other is a resonator part with a varactor diode and shorted shunt microstrip line. The shorted shunt microstrip line and series capacitor are utilized to compensate for the input reactance of the packaged HEMT that changes from capacitive values to inductive values at 8.1 GHz due to parasitic package inductance. By tuning the feedback capacitors which determine negative resistance values, this paper also investigates startup time improvement with the negative resistance variation and tuning bandwidth improvement with the reactance slope variation of the negative resistance part. The VCO measurement shows the tuning bandwidth of 2.3 GHz(28 %), the output power of 4.1~7.5 dBm and the startup time of less than 2 nsec.

A study on characteristics of High Efficiency and Wideband Microstrip Band Pass Filter for Wireless Data Communication (무선데이터 통신을 위한 고효율 광대역 마이크로스트립 대역통과 필터 특성에 관한 연구)

  • Lee, Young-Hun;Song, Sung-Hae;Park, Won-Woo;Lee, Sang-Jae
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.225-233
    • /
    • 2008
  • This paper presents a compact, low insertion loss, sharp rejection and wide band microstrip band pass filter that is composed rectangular loop resonator and step-impedance-open-stub(SIOS) for wireless data communication. The SIOS can be reduce length about 30% more than general 0.25${\lambda}$ stub. And stubs can have the advantage of tuning impedance magnitude. In order to demonstrate agrement of this paper prove, the optimized wide band pass filters are realized and experimented. A transmission line model used to calculate the frequency response of the new filters shows good agreement with measurements. The filter with perturbation stubs has four poles at rejection band, the poles are excited 3.610GHz, 4.265GHz at low frequency band, 8.494GHz, 9.056GHz at high frequency band. And the filter has 3dB fractional bandwidth of 57%(3.695GHz), an insertion loss of better than 0.37dB from 4.549GHz to 8.244GHz, and two rejection of greater than 30dB within 237MHz(4.312GHz${\sim}$ 4.549GHz) at low frequency band, 234MHz(8.244GHz-8.491GHz) at high frequency band.

  • PDF

Design of resistive mixer for 5.8GHz Wireless LAN (5.8GHz 무선 LAN용 저항성 혼합기 설계)

  • Yoo, Jae-Moon;Kang, Jeong-Jin;An, Jeong-Sig;Kim, Han-Suk;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.3 no.1 s.4
    • /
    • pp.79-85
    • /
    • 1999
  • In this paper, the resistive mixer for 5.86Hz wireless LAN, main part receiving system, was designed and implemented. The noise characteristics and the linearity in the base band was superior. For the use of local oscillator of mixer, dielectric resonator of stable output and temperature characteristics was designed. For the electrical tuning by the capacitance variation of varactor diode, the microstrip line and magnetic coupling characteristics of the dielectric resonance was used. It was obtained that gain of the proposed resistive mixer containing the RF cable loss, is -13.8dB, the conversion loss of frequency converter is -12 dB, and the output power of local oscillator is 1.67 dBm.

  • PDF

Compact Doppler Sensor Using Oscillator Type Active Antenna (능동 발진 안테나를 이용한 소형 도플러 센서)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, a compact doppler sensor with oscillator type active antenna operating at 2.4GHz frequency band is proposed to measure the distance or speed of a moving object. The active antenna has been realized by oscillator using radiator, patch antenna, as its resonator. The oscillation frequency is shifted depending on approaching of the object, and a detection circuit discriminates the frequency deviation. The oscillator type active antenna has been designed and simulated. The prototype fabricated has a very small circular disk type of diameter 30mm and height 4.2mm. As for antenna performance, broadside radiation pattern with beamwidth of $130^{\circ}$ and oscillation frequency of 2.373GHz has been measured. Test results as a doppler sensor shows that doppler signal voltage of about 190mV has been obtained for conducting plate moving 1 meter away from the sensor. And, doppler signal voltage has been linearly increased to the ground from 4.5m height by free-falling the sensor.

Configuration of ETDM 20 Gb/s optical transmitter / receiver and their characteristics (전기적 시분할 다중 방식을 이용한 20 Gb/s 광송,수신기의 제작 및 성능 평가)

  • Lim, Sang-Kyu;Cho, Hyun-Woo;Lyu, Gap-Youl;Lee, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2002
  • We developed an optical transmitter and receiver for an electrical time division multiplexed (ETDM) 20 Gb/s optical transmission system, and experimentally investigated their characteristics. Especially, the clock extraction circuit, which is a key component in realizing broadband optical transmission receivers, was realized by using an NRZ-to-PRZ converter implemented with a half-period delay line and an EX-OR, a high-Q bandpass filter using a cylindrical dielectric resonator, and a microstrip coupled-line bandpass filter. Finally, the bit-error-rate of demultiplexed 10 Gb/s electrical signal after back to-back transmission was measured, and a high receiver sensitivity [-26.2 dBm for NRZ ($2^{7}-1$) pseudorandom binary sequence (PRBS)] was obtained

Implementation of Down Converter for Ku-Band Application (Ku 대역용 주파수변환기의 구현)

  • 정동근;김상태;하천수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.527-536
    • /
    • 2000
  • This paper discusses the design of self-oscillating mixer type low noise down converter using the microwave field effect transistor. The mixer is consists of local oscillator in which high stability dielectric resonator and band pass filter to get rid of spurious oscillation at intermediate frequency stage. The microstrip antenna was integrated in the same substrate which generate 12.3GHz and low noise amplifier was also added after antenna using 3 stage of high electron mobility transistors. The output frequency from the local oscillator was chosen as 11.3GHz for the Ku-band application. The measured phase noise was -804dBc/Hz at 100kHz offset frequency, and the gain was 7~12dB in frequency range from 12.0GHz to 12.7GHz. The noise figure at intermediate frequency stage was 64H. The designed model shows less conversion loss than previous diode type mixer. The proposed mixer can be used in digital satellite broadcasting and communication system and expected to use in next generation low noise block design.

  • PDF

Analysis of Microstrip Bandstop Filter Based on the Photonic Bandgap(PBG) Structure Using FDTD (FDTD를 이용한 PBG 구조를 갖는 마이크로스트립 대역저지 여파기에 관한 분석)

  • Ho, Jin-Key;Yun, Young-Seol;Park, Sang-Hyun;Choi, Young-Wan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.52-62
    • /
    • 2003
  • In this paper, photonic bandgap(PBG) bandstop filters which are composed of periodically etched circles in the ground plane show good microwave characteristics with the harmonic suppression on stopband. The PBG structures were analyzed using a finite-difference time-domain(FDTD) simulation and experimental measurement. The FDTD technique is used because it can simulate arbitrary 3-D structures and provide broadband frequency response. The analysis results are presented it is the same that only one row of etched circles and 2-dimension three rows of etched circles. And we show the PBG resonator characteristics between etched circles using field pattern and frequency characteristics as functions of etched circle number n, etched circle radius r and period a.

  • PDF

The Analysis of Dual Resonant Iris for Designing Waveguide Band-Pass Filter (대역 통과 도파관 여파기 설계를 위한 이중 공진 아이리스 해석)

  • Choi, Jin-Young;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.904-911
    • /
    • 2011
  • This paper deals with transmission characteristics of a new dual resonant structure for designing waveguide band-pass filter. The structure which has a pass-band between two adjacent stop-bands in a single body consists of circular ridged aperture and four armed conducting patch. The dual resonant behavior of the structure can be represented by a combination of LC series and parallel resonant circuits. Also these resonant properties can be easily controlled by varying the geometry of the aperture and four armed conducting patch. Actually, the structure is fabricated on the microstrip substrate by use of etching technique so that it is formed an iris type resonator which can be easily put into the transverse plane of the waveguide. We use WR-90 standard waveguide, adapters, and VNA(vector network analyzer) to measure the resonant characteristics of the structure. It is very useful to design and to improve the cutoff skirts characteristics in the waveguide band-pass filter design area.

Field Probe Sensor Based on the Electro-Optic Effect (전기광학효과를 이용한 전계 프로브 센서)

  • Kyoung, Un-Hwan;Kim, Gun-Duk;Eo, Yun-Seong;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.71-75
    • /
    • 2009
  • A compact electric field probe sensor incorporating two different electro-optic materials of $LiNbO_3$ and GaAs was proposed and fabricated, and it was used to measure the strength of the horizontal and vertical fields generated by a microstrip ring-resonator filter. The sensitivities of the sensors in $LiNbO_3$ and GaAs were $9.315{\mu}V/\sqrt{Hz}$ and ${\sim}49.346{\mu}V/\sqrt{Hz}$ respectively, and their signal to noise ratios were approximately ${\sim}50\;dB$ and ${\sim}40\;dB$ respectively. And the operating frequency range was up to ${\sim}1.2\;GHz$. The electric field profile for the test circuit was scanned and found to be in good agreement with that obtained by using the HFSS simulation.

The Optimal Design of a Triple-Band Antenna with Additional Arm Resonating Structure for LTE, ISM and WLAN Application (LTE, ISM, WLAN에 적용 가능한 Arm 구조 삼중대역 안테나 최적 설계)

  • Lee, Seung-Je;Oh, Seung-Hun;Lee, Jeong-Hyeok;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1655-1660
    • /
    • 2014
  • In this paper, we propose a design of a triple-band microstrip circular patch antenna. The proposed antenna generates the triple frequency resonance at 1.85GHz(LTE), 2.45GHz(ISM) and 5.5GHz(WLAN). Firstly, we design the dual-band antenna. The dual-band antenna consist of the circular patch, slits, and the slot. The circular patch and slot are designed for dual frequency of 2.45GHz and 5.5GHz, respectively. And then the dual-band antenna is combined with additional arm-shaped structure for the triple-band characteristic. The arm-shaped structure is operated as the dipole. It is designed for lowest frequency of 1.85GHz. Each part of the antenna unites to a new structure. In order to design the proposed antenna automatically and optimally, APSO algorithm is adopted. During APSO, the mismatch of the proposed antenna is resolved. The optimal designed antenna has an acceptable return loss(-10dB) at each bands(i.e, 1.85GHz, 2.45GHz and 5.5GHz).