• Title/Summary/Keyword: Microstrip patch antenna

Search Result 594, Processing Time 0.024 seconds

Design and Implementation of Plannar S-DMB Antenna with Omni-Directional Radiation Pattern Using Metamaterial Technique (메타 물질 기법을 이용한 전방향성 복사 패턴을 갖는 평면형 S-DMB 안테나 설계 및 구현)

  • An, Chan-Kyu;Yu, Ju-Bong;Jeon, Jun-Ho;Kim, Woo-Chan;Yang, Woon-Geun;Nah, Byung-Ku;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1343-1351
    • /
    • 2010
  • In this paper, a novel patch antenna based on the metamaterial CRLH(Composite Right- and Left-Handed) structure is designed, implemented, and measured. Contrary to the standard microstrip patch's fundamental resonance mode of half-wavelength or its positive multiple, the proposed antenna shows the in-phase electric field over the entire antenna. The proposed antenna has a desired omni-directional field pattern which is typical characteristic of $\lambda/4$ monopole antenna, and also shows the merit of low profile. HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) is used to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for the proposed antenna implementation. The implemented antenna showed VSWR (Voltage Standarding Wave Ratio)$\leq$2 for the frequency band from 2.63 GHz to 2.655 GHz which is used for S-DMB (Satellite-Digital Multimedia Broadcasting) service. And measured peak gain and efficiency are 2.65 dBi and 81.14 %, respectively.

Design and fabrication of the GPS antenna system including RF-stage (RF 수신부를 내장한 GPS 안테나 시스템의 설계 및 제작)

  • 홍성일;이정호;변건식;정만영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.99-107
    • /
    • 1996
  • When GPS (global positioning system) is used as synchronous signal in CDMA digital cellular base station system and high speed digital synchronous communication network, antenna cable length is increased, comparing with other GPS application such as positioning or car navigation. In this paper, it is proposed that a type of new GPS antenna system including RF stage for reduction of cable loss in case of long cable.The antenna system with TMPA(truncated-corners microstrip patch antenna) is designed and fabricated because GPS signal has RHCP (right-hand circular polarization), consequently antenna size can be made small size. LNA (low noise amplifier) is designed by using HEMT(high electron mobility transistor)which has lower noise figurae and better AGC characteristics at low voltage than GaAs FET, and we equiped mixer, in GPS antenna unit, which converts from 1575.42MHz to 75.42MHz. As result of comparing between typical system and proposed system when cable length is 60m, 63dB, 55dB and 25dB gain are obtained for RG-316/U, RG-58C/U and RG-213/U, and better characteristics are achieved than typical system as far as cable length is longer.

  • PDF

A Study on the Design of Polarization Selective Antenna for UHF RFID System (UHF RFID 시스템을 위한 Polarization Selective 안테나 설계 연구)

  • Lee, Sa-Won;Song, Woo-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.170-175
    • /
    • 2010
  • This article proposed polarization selective antenna for UHF RFID system. The proposed antenna is consist of microstrip patch antenna with dual feeding and two SPDT switches and a SP4T switch and 3dB hybrid coupler. Through control of voltage of switches, the proposed reader antenna can select horizontally linear polarization, vertically linear polarization, left-hand circular polarization (LHCP) and right hand circular polarization (RHCP). The proposed reader antenna satisfied 2:1 VSWR at 902MHz ~ 928MHz. and 3dB under AR(axial ratio). And it can select appropriative polarization with user environment and tag polarization. So it minimize PLF and increased reading distance.

Design of Series-Fed Microstrip Patch Array Antennas for Monopulse Radar Sensor Applications (모노 펄스 레이더 센서용 직렬 급전 마이크로스트립 패치 배열 안테나 설계)

  • Park, Eui-Joon;Jung, Ik-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1248-1258
    • /
    • 2010
  • In this paper, a method for simultaneously realizing the sum and difference patterns which are required in the monopulse radar sensor systems, is presented by using single taper array antenna with rectangular microstrip patches. The widths of patches are first determined by the voltage weights which are synthesized for the fundamental array factor patterns to be applied to the monopulse operation by using the sidelobe levels(SLLs) control technique. As the bi-directionally series-fed technique is applied and the lengths of connecting lines between patches are appropriately adjusted, the single array generates two phase-shifted beams which activates out-of-phase and in-phase ports of a $180^{\circ}$ hybrid coupler to synthesize the sum and difference patterns. The simulated results on the configuration designed at 9.5 GHz are compared with measured results showing the validity of the proposed method.

A Thin Folded Dipole UHF RFID Tag Antenna with Shorting Pins for Metallic Objects

  • Tang, Tao;Du, Guo-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2253-2265
    • /
    • 2012
  • A novel folded dipole type microstrip patch antenna designed for ultrahigh frequency (UHF) band radio frequency identification (RFID) tag is presented in this paper, which can be used on the metallic objects. The presented antenna is fabricated on a very thin Rogers 5880 substrate with a thickness of 0.508 mm. The structure consists of two folded dipole and two symmetrical shorting pins placed at both sides of feed point. An adjustable frequency response can be easy obtained via modify the location and radius of the shorting pins. The antenna has been analyzed by full wave simulations soft. The simulated bandwidth is about 67.2 MHz, which covers the Europe and North America UHF RFID frequency range. A manufactured prototype has been fabricated and measured to demonstrate the antenna performances. The simulation results agree with the measurement data well. The measured maximum reading range of the prototype can be reached 4.1 m in free space, and 3.2 m on a metal plate whose size is $150{\times}150{\times}8mm^3$.

Design of Transceiver Front-end using Circular Sector Patch Antenna (원형 섹터 패치 안테나를 사용한 트랜시버 전단부 설계)

  • ;Tatsuo Itohv
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.807-811
    • /
    • 2001
  • In this paper we proposed a dual-frequency circular sector microstrip antenna with orthogonal polarized modes and high isolation between the two feeding ports. And then we designed a transceiver operating at 5.6 GHz for transmitting and at 5.5 GHz for receiving. The good isolation provided by the proposed antenna is used as the basis for the transmit-receive filtering of transceiver. The operating frequencies and polarization characteristics of the proposed antenna is calculated by using a cavity model. The 5-parameters and radiation patterns of the antenna are measured. A power amplifier and a low noise amplifier are designed and integrated with antenna to make a transceiver, which has about 13dB transmitting gain and about 8㏈ receiving gain.

  • PDF

An Optimal Design of a 19.05GHz High Gain 4X4 Array Antenna Using the Evolution Strategy (진화전략 기법을 이용한 19.05GHz 고이득 4X4 배열 안테나 최적설계)

  • Kim, Koon-Tae;Kwon, So-Hyun;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.811-816
    • /
    • 2011
  • In this paper, we propose a optimal design using the Evolution Strategy of a high gain $4\times4$ array antenna that have the resonant frequency of a 19.05GHz with 18.86GHz~19.26GHz bandwidth. The proposed array antenna structure is designed to be allocated equally electric power by microstrip patch power splitter. Thus the optimal array antenna with power splitter are determined by using an optimal design program based on the evolution strategy. To achieve this, an interface program between a commercial EM analysis tool and the optimal design program is constructed for implementing the evolution strategy technique that seeks a global optimum of the objective function through the iterative design process consisting of variation and reproduction. The simulation result of $4\times4$ array antenna is confirmed that the Gain is 19.36 dBi at resonance frequency 19.05GHz.

Design of a Broadband Quasi-Yagi Antenna fed by a Microstrip with a Shorted End (단락종단된 마이크로스트립으로 급전되는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.70-73
    • /
    • 2012
  • In this paper, we introduce a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio of > 2 : 1 and a gain of > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a rectangular patch-type director with large width near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of $90mm{\times}90mm$ and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.41-6.53 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

  • PDF

The Design of 800MHz Band Repeater Antenna for Ship Base Station Application (선박기지국 응용을 위한 800MHz 대역 중계기용 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.219-222
    • /
    • 2007
  • In this paper, we have designed microstrip antenna of 800[MHz] band. It will be able to integrate TRS(Trunked Radio System), GSM(Global System for Mobile telecommunication) band including the CDMA(Code Division Multiple Access) band. we designed repeater and a base station antenna which is possible at the ship and marine of safety. It is improves a narrow bandwidth problem of microstrip antenna. It had L-shaped feeding structure at a rectangular patch and added the parallel L-slot that used a duplex resonance effect. Also for the improvement of profit the stack with the perpendicular. Designed frequency bandwith(VSWR 2:1) of the antenna showed good characteristic of 789${\sim}$1046[MHz] to 292[MHz](36%). Also the E-plan and H-plan all profit 6.4[dBi] above, the 3[dB] beam width showed the characteristic over the E-plan $44.7^{\circ} and H-plan $61.8^{\circ} to be improved.

  • PDF

SFCFOS Uniform and Chebyshev Amplitude Distribution Linear Array Antenna for K-Band Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • In this study, a compact series-fed center-fed open-stub (SFCFOS) linear array antenna for K-band applications is presented. The antenna is composed of a single-line 10-element linear array. A symmetrical Chebyshev amplitude distribution (CAD) is used to obtain a low sidelobe characteristic against a uniform amplitude distribution (UAD). The amplitude is controlled by varying the width of the microstrip patch elements, and open-ended stubs are arranged next to the last antenna element to use the energy of the radiating signal more effectively. We insert a series-fed stub between two patches and obtain a low mutual coupling for a 4.28-mm center-to-center spacing ($0.7{\lambda}$ at 21 GHz). A prototype of the antenna is fabricated and tested. The overall size of the uniform linear array is $7.04{\times}1.05{\times}0.0563{\lambda}_g^3$ and that of the Chebyshev linear array is $9.92{\times}1.48{\times}0.0793{\lambda}_g^3$. The UAD array yields a ${\mid}S_{11}{\mid}$ < -10 dB bandwidth of 1.33% (20.912-21.192 GHz) and 1.45% (20.89-21.196 GHz) for the CAD. The uniform array design gives a -23 dB return loss, and the Chebyshev array achieves a -30.68 dB return loss at the center frequency with gains of 15.3 dBi and 17 dBi, respectively. The simulated and measured results are in good agreement.