• 제목/요약/키워드: Microstrip patch antenna

Search Result 593, Processing Time 0.027 seconds

A Design of ASP Microstrip Antenna for PCS band and IMT-2000 band (PCS 대역과 IMT-2000 대역 겸용 ASP 마이크로스트립 안테나 설계)

  • Lee, Eun-Gyu;Jang, Young-Chul;Lee, Jae-Wook;Lee, Won-Hui;Hur, Jung
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.397-400
    • /
    • 2001
  • In this paper, to improve bandwidth of microstrip antenna, we discussed the patch structure using Aperture Stacked Patch. To provid PCS service and IMT-2000 service simultaneous, a microstrip patch antenna needs impedance bandwidth of 22%. But typical microstrip patch antennas have impedance bandwidth of 3∼6%. To analyze characteristics of microstrip pach antenna, we used Ensemble of commercial software. The microsrtip patch antenna was designed and fabricated, tuned. We get following results; 650MHz(33%) of impedance bandwidth for VSWR 1.5. The measured gain of ASP microstrip antenna is 6.94dBi.

  • PDF

Planar Microstrip Patch Antenna for 5G Wireless Applications

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • This paper describes a planar microstrip patch antenna designed on dielectric substrate. Two types of planar microstrip patch antennas are studied for the 5G wireless applications, one type is conventional microstrip structure, the other type is stacked microstrip structure fed by coaxial probe. Using electromagnetically coupling method, stacked microstrip patch antenna employing a multi-layer substrate structure was designed. The results indicate that the proposed stacked microstrip patch antenna performs well at 5G wireless service bandwith a broadband from 3.42GHz to 3.70GHz. The impedance bandwidth(VSWR≤2) is 360MHz(10.28%) from 3.42GHz to 3.78GHz. In this paper, through the designing of a stacked microstrip patch antenna, we have presented the availability for 5G wireless repeater system.

A Study on the Comb-Pattern Slot in the Supplementary Microstrip Patch (추가된 마이크로스트립 패치의 빗살무늬 슬롯에 의한 영향 연구)

  • Shim, Jae-Ruen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.180-183
    • /
    • 2006
  • In this study, an supplementary microstrip patch with a comb-pattern slot is positioned on the conventional single layer microstrip patch antenna. Numerical results of the antenna bandwidth and the antenna gain are increased compared with those of the conventional single layer microstrip patch antenna. In the future, the geometry of the slot in an supplementary microstrip patch is researched for the enhancement of the microstrip antenna characteristics.

A Study on the Design of Wideband Antenn as using U-Slot Patches (U-Slot 패치를 이용한 광대역 안테나의 설계에 관한 연구)

  • Kim Won-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Microstrip antennas generally have a lot of advantages that are thin profile, lightweight, low cost, and conformability to a shaped surface application with integrated circuitry. In addition to military applications, they have become attractive candidates in a variety of commercial applications such as mobile satellite communications, the direct broadcast system (DBS), global positioning system (GPS), and remote sensing. Recently, many of the researches have been achieved for improving the impedance bandwidth of microstrip antennas. The basic form of the microstrip antenna, consisting of a conducting patch printed on a grounded substrate, has an impedance bandwidth of $1\~2\%$. For improvement of narrow bandwidth of microstrip patch, we were designed U-slot microstrip patch antenna in this paper. This antenna had wide bandwidth for all personal communication services (PCS) and IMT-2000. For the design of U-slot microstrip patch antenna using a finite difference time domain(FDTD) method. This numerical method could get the frequency property of U-slot patch antenna and the electromagnetic fields of slots.

Design and Fabrication of Microstrip Patch Antenna for GPS (GPS용 마이크로스트립 패치 안테나 설계 및 제작)

  • 이은진;강부식;홍성욱;김홍수
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.183-186
    • /
    • 2002
  • In this paper, a microstrip Patch antenna with the T-shaped slits, which are employed to reduce the patch size. is proposed for GPS In order to analyze characteristics of the antennas are defined green function of the moment method. The microstrip Patch antenna and microstrip Patch with the T-shaped slits are fabricated. The numerical result of return loss and -10d13 bandwidth are compared with measured results.

  • PDF

A Small Microstrip Patch Antenna (소형 마이크로스트립 패치 안테나)

  • 장순범;박동국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.351-355
    • /
    • 2003
  • In this paper, rectangular patch antenna is miniaturized by changing the middle of patch into narrow microstrip line except the edges of the patch where the fringing field occurs. Miniaturized rate, gain, bandwidth, radiation pattern of suggested antennas were compared with general square and rectangular microstrip antennas by using simulator Ensemble. As a result, it reduces the dimension of antenna by 44 % and improves the characteristic of x-pol by 40 dB as an advantage when compare with square microstrip antenna while it reduces bandwidth.

A Study on the Characteristics of Microstrip Patch Antenna with Frequency Selective Surface with Fractal Slot (프랙탈 슬롯을 가진 주파수 선택적 평면(FSS)에 의한 마이크로스트립 패치 안테나의 특성 연구)

  • Shim, Jae-Ruen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1242-1246
    • /
    • 2007
  • In this study, FSS(Frequency Selective Surface) with Koch Fractal Curve slot is positioned on the conventional single layer microstrip patch antenna. Numerical results of the proposed antenna bandwidth and the antenna gain are increased compared with those of the conventional single layer microstrip patch antenna. In the future, the fractal geometry of the slot in FSS(Frequency Selective Surface) as a supplementary microstrip patch is researched for the enhancement of the microstrip patch antenna characteristics.

Study on the Bandwidth of Microstrip Patch Antenna (슬롯 패치 안테나의 대역폭 확장에 관한 연구)

  • Lee, Chick-Youl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.581-585
    • /
    • 2013
  • A technique to expand the operating impedance bandwidth of a microstrip patch antenna is presented. The antenna is fed by a truncated T-shaped microstrip line on the ground plane with the rectangular slot. The proposed microstrip patch antenna offers wide bandwidth characteristics with the rectangular slot which has optimized size and position on the ground plane. The simulation result shows a fractional bandwidth of 127.8 %(0.65 to 2.95 GHz) at VSWR 2:1.

A Design and Fabrication of Microstrip Patch Antenna for PCS band and IMT-2000 band (PCS 대역과 IMT-2000 대역 겸용 마이크로스트립 패치 안테나의 설계 및 제작)

  • Lee, Won-Hui;Choi, Kyung-Sik;Hur, Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.108-116
    • /
    • 2002
  • In this paper, to improve bandwidth of microstrip antenna, we discussed the patch structure using dual patch and probe feed. To provide PCS service and IMT-2000 service simultaneous, a microstrip patch antenna needs impedance bandwidth of 22%. We propose wide-band microstrip path antenna without complexity. To analyze characteristics of microstrip patch antenna, we used Ensemble of commercial software. The microstrip patch antenna was designed, fabricated, and tuned. The result was that 500 ㎒(25.5%) of impedance bandwidth for VSWR 2,430 ㎒(21.9%) of impedance bandwidth for VSWR 1.5. The microstrip patch antenna has side lobe of -14 dB. The front to back ratio is 20 dB overall. The measured gain of the microstrip patch antenna is 5.2 dBi.

Design and Analysis of Gap Coupled Microstrip Patch Antenna using the FDTD method (유한차분 시간영역법을 이용한 갭 결합 마이크로 스트립 패치안테나의 설계 및 해석)

  • Shin, Ho-Sub
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.389-393
    • /
    • 2009
  • In this paper, the single patch microstrip antenna and gap coupled broadband microstrip patch antenna using FDTD(Finite Difference Time Domain method) are analyzed. Mur's 2nd absorbing boundary condition to minimize reflected wave is applied. Return loss, voltage standing wave ratio, and input impedance by the length and width of driving patch, the length and width of parasitic patch, and the distance between driving patch and parasitic patch have been analyzed. Design parameters and radiation patterns of broadband antenna have been also shown.

  • PDF