• Title/Summary/Keyword: Microstrip line

Search Result 710, Processing Time 0.024 seconds

Design of Planar Dipole Pair Antenna for Indoor Digital TV Reception (실내 디지털 TV 수신용 평면 다이폴 쌍 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Han, Dae-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2600-2606
    • /
    • 2014
  • In this paper, a design method for a planar dipole pair antenna for an operation in the frequency band of 470-806 MHz for terrestrial indoor digital TV (DTV) is studied. The proposed antenna is composed of two planar dipoles connected through conducting strips, and the antenna is fed by a microstrip line. By employing different lengths of dipoles, a broadband characteristics is obtained, and the antenna is size-reduced by bending both ends of the longer dipole. The effects of design parameters on the antenna performance are examined by simulation, and the parameters are adjusted for terrestrial DTV band use. A prototype of the antenna for indoor DTV reception is fabricated on an FR4 substrate with a size of $240mm{\times}139.5mm$ and tested experimentally. The experiment results show that the frequency band for a VSWR < 2 ranges 458-864 MHz(61.4%), and it corresponds fairly well with the simulated band of 448-868 MHz(63.8%).

Wideband Bandstop filter Using Dual Spurline and Coupling Open Stubs (이중 스퍼라인과 커플링 오픈스터브를 이용한 광대역 대역저지 필터)

  • Lee, Hyun-Seung;Choi, Jee-Hwan;Kim, Choul-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • In this paper, we propose a wideband band-stop filter (BSF) in order to extend the stopband of the band-stop filter using a symmetric dual spurline and the coupled open stub. First, we know that the symmetric dual spurline structure is advantageous in widening the stopband, as compared to the asymmetric dual spurline structure. So we designed a band-stop filter that combines the electrically coupled open stub (ECOS) band-stop filter with a symmetric dual spurline. We can greatly extend the stopband, when it is combined with the dual spurline and electrically coupled open stub on a microstrip transmission line, without any size increment. The stopband of the proposed band-stop filter is extended by approximately 244% (rejection depth: -20 dB) compared with a band-stop filter without a dual spurline.

Study on The Electrical Characteristic Extraction of PI(Poly Imide) Substrate using T-resonator Method (T-resonator를 이용한 PI(Poly Imide) 기판의 전기적 특성 추출에 관한 연구)

  • Lee, Gwang-Hoon;Yoo, Chan-Sei;Lee, Woo-Sung;Yang, Ho-Min;Jung, Han-Ju;Kim, Hong-Sam;Lee, Bong-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.222-222
    • /
    • 2007
  • RF circuit을 구현하는데 있어서 기판의 전기적 특성을 정확하게 아는 것은 원하는 결과를 추출하기 위해 매우 중요하다. 본 연구에서는 현재 사용되고 있는 PI 기판의 전기적인 특성인 유효 유전율과 loss tangent 값을 T-resonator률 이용해 정확하게 측정하고자 했다. T-resonator는 microstrip 구조로 구현 되었으며 conductor material은 Cu를 사용하였다. PI 기판의 두께는 25um, Cu의 두께는 PI 기판의 종류에 따라 12um 와 18um, T-resonator line width는 50um로 구현하였다. 또한 공진 주파수에 따라 stub 길이가 다른 10개의 T-resonator를 제작하였다. PI 기판의 유효 유전율을 구하기 위해 stub 길이의 open-end effect와 T-junction effect를 고려하였으며 수식을 통해 정확한 유효 유전률을 추출하였다. 또한 PI 기판의 loss tangent 추출에 필요한 dielectric loss를 추출하기 위해 unload quality factor를 분석하였다. Unload quality factor는 dielectric loss, conductor loss, radiation loss를 구성되며 conductor loss와 radiation loss를 수식에 의해 구하고 dielectric loss를 추출 하였다. 추출 된 dielectric loss를 통해 각각의 T-resonator의 loss tangent 값을 구하였다. T-resonator를 이용한 PI 기판의 측정은 비교적 복잡한 수식에 의해 이루어지지만 정확한 data를 얻을 수 있고 다른 재료의 전기적 특성을 추출하는데 응용이 가능하다.

  • PDF

More compact rectangular two stepped slot antenna for Wi-Fi dual band application (더욱 소형화된 와이파이 이중대역용 직사각형 2단 계단식 슬롯 안테나)

  • Kim, Min-woo;Lee, Yeong-min;Lee, Hee-jae;Lee, Young-soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.17-23
    • /
    • 2021
  • In the present study, a more compact dual-band slot antenna is newly proposed for Wi-Fi application. The proposed antenna is composed of rectangular two stepped slot with open end which can generate standing wave resonance at dual frequency bands and L-type microstrip feed line. The measured impedance bandwidths are 50 MHz(2.412 ~ 2.470 GHz) at low frequency band and 452 MHz(5.451 ~ 5.903 GHz) at high frequency band respectiviely. Furthermore its size of 14 × 21 mm2 is reduced by 30% compared to the size of 20 × 21 mm2 of a conventional similar compact slot antenna. It has the omni-directional radiation pattern characteristics of a typical dipole antenna on the H-Plane, so it is suitable for commercial wireless network applications such as Wi-Fi.

Nacl Aqueous Solution Concentration Detection Using Slot-Coupled Capacitor Resonator (슬롯결합 커패시터 공진기를 이용한 Nacl 수용액 농도 검출)

  • Yun, Gi-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.29-35
    • /
    • 2018
  • In this paper, we proposed a high sensitivity sensor that can detect the concentration change of Nacl aqueous solutions by using a slot coupling capacitor resonator in sub-microwave band. The resonator applied to the sensor consists of a parallel plate capacitor connected to an inductive slot utilizing the ground plane of the microstrip line. Based on the measurement data of the dielectric characteristics according to the concentration change, the resonance frequency was determined in the UHF band where the concentration change is evident and the Nacl aqueous solution is inserted into the capacitor. Based on the simulation, the proposed resonator was designed and fabricated. The concentration level was varied from 0 to 400 mg/dl as 100 mg/dl step, and the transmission scattering coefficient ($S_{21}$) was successfully measured. Experimental results show that it is applicable to the concentration detection sensor in Nacl aqueous solution by obtaining minimum 1.8 dB($S_{21}$) at each step.

Design of 60-GHz Back-to-back Differential Patch Antenna on Silicon Substrate

  • Deokgi Kim;Juhyeong Seo;Seungmin Ryu;Sangyoon Lee;JaeHyun Noh;Byeongju Kang;Donghyuk Jung;Sarah Eunkyung Kim;Dongha Shim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.142-147
    • /
    • 2023
  • This paper presents a novel design of a differential patch antenna for 60-GHz millimeter-wave applications. The design process of the back-to-back (BTB) patch antenna is based on the conventional single-patch antenna. The initial design of the BTB patch antenna (Type-I) has a patch size of 0.66 × 0.98 mm2 and a substrate size of 0.99 × 1.48 mm2. It has a gain of 1.83 dBi and an efficiency of 94.4% with an omni-directional radiation pattern. A 0.4 mm-thick high-resistivity silicon (HRS) is employed for the substrate of the BTB patch antenna. The proposed antenna is further analyzed to investigate the effect of substrate size and resistivity. As the substrate resistivity decreases, the gain and efficiency degrade due to the substrate loss. As the substrate (HRS) size decreases approaching the patch size, the resonant frequency increases with a higher gain and efficiency. The BTB patch antenna has optimal performances when the substrate size matches the patch size on the HRS substrate (Type-II). The antenna is redesigned to have a patch size of 0.81 × 1.18 mm2 on the HRS substrate in the same size. It has an efficiency of 94.9% and a gain of 1.97 dBi at the resonant frequency of 60 GHz with an omni-directional radiation pattern. Compared to the initial design of the BTB patch antenna (Type-I), the optimal BTB patch antenna (Type-II) has a slightly higher efficiency and gain with a considerable reduction in antenna area by 34.8%.

  • PDF

The Design and Fabrication of the Triple-Band Planar Monopole Antenna for Coupled U Patch Line and Rectangular Patch (U자형 패치 라인과 사각 패치를 결합한 삼중 대역 평면형 모노폴 안테나 설계 및 제작)

  • Lee, Sung-Hun;Lee, Seung-Woo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.745-753
    • /
    • 2011
  • In this paper, the planar monopole antenna for multi-band service is proposed. The proposed antenna, which is a rectangular patch antenna with a U-shaped slit based on a monopole antenna for wide bandwidth characteristic, is designed and analyzed. The antenna size has been miniaturized by using the U-shaped slit. The frequency characteristics are modified and optimized by varying specific parameters. To obtain desired frequency bands, the U-shaped slit and patch lines have been applied. Whole antenna dimensions including the ground plane are $35{\times}50{\times}1\;mm^3$, and the antenna part size is $35{\times}27\;mm^2$. It is fabricated on the FR-4 substrate(${\epsilon}_r=4.4$) using a microstrip line of $50{\Omega}$ for impedance matching. For the measured results, the impedance bandwidth below a VSWR of 2 is 790~916 MHz, 1.74~2.14 GHz, and 2.36~3.13 GHz. The fabricated antenna is satisfied with the aimed impedance bandwidth in GSM/DCS/US-PCS/UMTS/Bluetooth/S-DMB applications.

Compact Half Bow-tie-type Quasi-Yagi Antenna for Terrestrial DTV Reception (지상파 디지털 방송 수신용 소형 반 보우 타이 형 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1908-1914
    • /
    • 2013
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The coplanar strip line which feeds the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type rectangular director at a location close to the driver dipole, broadband impedance matching and gain enhancement in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bow-tie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as a design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a good performance such as a frequency band of 450-848 MHz for a VSWR < 2, gain > 4.1 dBi, and front-to-back ratio > 10.4 dB.

Design and Implementation of Monopole Antenna with Parasitic Element of Spiral Shape and L-Resonator (스파이럴 구조 기생 소자와 L자형 공진기를 갖는 모노폴 안테나 설계 및 구현)

  • Yoon, Kwang-Yeol;Lee, Seungwoo;Kim, Jang-Yeol;Rhee, Seung-Yeop;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • In this paper, we designed and implemented the planar monopole antenna using the coupling effect for the multi-band characteristic. A parasitic element for the multi-band characteristic based on a rectangular patch with single resonance is inserted. Spiral shaped parasitic element is used for minimizing the antenna size and obtaining the multi-resonance characteristic. The frequency characteristics are modified and optimized by varying specific parameters. By inserting an L-shaped resonator at both sides of the feed line which connected through the via hole to the ground plane, unnecessary frequency bands are eliminated. Proposed antenna dimension is $40{\times}60{\times}1mm^3$. It is fabricated on the FR-4 substrate(${\varepsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. By measurement results, the characteristic of the return loss under -10 dB are 1.714~2.496 GHz, 2.977~4.301 GHz, and 4.721~6.315 GHz, and the radiation patterns have omni-directional shapes.

Bandwidth Improvement of a Series-fed Two Dipole Array Antenna (직렬 급전된 두 개의 다이폴 배열 안테나의 대역폭 향상)

  • Yeo, Jun-Ho;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5214-5218
    • /
    • 2011
  • In this paper, bandwidth improvement of a series-fed two dipole array(STDA) antenna applicable for mobile communication base station antennas is studied. The proposed STDA antenna consists of two strip dipole antennas with different lengths which are connected directly trough a coplanar stripline(CPS). By adjusting the spacing between the two dipoles and the length of the second dipole, the bandwidth of the STDA can be enhanced. In addition, an integrated balun composed of a short-circuited microstrip line and a slot line is utilized to minimize the area required for a feeding part, and a broadband impedance matching is obtained by adjusting the feeding point. Based on the proposed antenna structure, an STDA antenna covering the frequency band ranging from 1.75 GHz to 2.7 GHz, which includes almost all the existing mobile communication frequency bands, with more than 5 dBi gain is designed and fabricated on an FR4 substrate with dielectric constant of 4.4 and thickness of 1.6mm, and experimentally tested. The fabricated antenna shows impedance bandwidth of 49%(1.7-2.8 GHz) for VSWR<2, a gain higher than 5.5 dBi, and a front-back ratio better than 12 dB.