• Title/Summary/Keyword: Microstrip Reflectarray Antenna

Search Result 4, Processing Time 0.016 seconds

Design of Square Patch Reflectarray Antenna with U-type Slot (U자형 슬롯을 갖는 정사각형 패치 리플렉트어레이 안테나의 설계)

  • Kim, Seon-Hye;Choi, Hak-Keun;Park, Jae-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The microstrip reflectarray antenna is rapidly becoming an attractive alternative solution to the traditional parabolic reflector antenna. However, the bandwidth of the microstrip reflectarray using the single layer structure is very narrow. To obtain wide bandwidth characteristic, the microstrip reflectarray using the multi-layer structure has been used, but it has some disadvantages such as high cost and complicated design. In this paper, to obtain low cost and wide bandwidth, the microstrip reflectarray antenna composed of square patch with two U-slots using the single-layer structure is proposed. The proposed antenna demonstrate radiation efficiency closed to 55.5 % and 1 dB gain bandwidth over 14 % at 12.5 GHz.

Dualband Shared-Aperture Microstrip Antenna for Reflectarray Feeding Structure of LEO Satellite System

  • Bagas Satriyotomo;Ji-Woong Hyun;Seongmin Pyo
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.20-25
    • /
    • 2024
  • This paper presents a new dualband shared-aperture microstrip antenna to operate in the S-Band of 2 GHz and X-Band of 8 GHz, for a Low Earth Orbit satellite antenna system. The proposed antenna incorporates two types of patches those are a rectangular loop-shaped for the S-Band and a square patch for the X-Band. Each patch are optimized for its respective operating band with minimal interference. The proposed antenna achieves a bandwidth of 16 MHz in the S-Band and 572 MHz in the X-Band. The highest gain is measured 7.14 dBi at 1.99 GHz and 7.95 dBi at 7.88 GHz. The proposed antenna exhibits half power beamwidths of 85 degree and 80 degree at 1.99 GHz and 7.88 GHz, respectively. The proposed dualband shared-aperture microstrip antenna may be a good candidate for as a feeding system of a dualband reflectarray antenna With its unidirectional radiation pattern from excellent agreement between simulation and measurement results.

Researches on Microstrip Reflectarray Antennas (마이크로스트립 리플렉트어레이 안테나에 관한 연구)

  • Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.937-950
    • /
    • 2015
  • Microstrip reflectarray is an antenna which controls its radiation pattern with a number of reflective elements. Conventionally, the reflectarray has been researched to replace curved reflector antennas. In this paper, design theories of reflectarray is briefly introduced, and research trends of high gain and broadband reflectarrays are reviewed. To improve the gain of the reflectarrays, it is required that the reflection phase errors on the reflectarray surface be minimized. For this purpose, sufficiently wide reflection phase range and low phase sensitivity should be realized with the designed element. For bandwidth improvement, the reflection phase of the element should be linear with the frequency variation. In this paper, various researches to improve the reflection phase characteristics of the element for high gain and broadband reflectarrays, such as multi-layer and single-layer multi-resonant structures, are reviewed. Also, dual-reflectarray configuration for compact antenna design is reviewed. Finally, various applications of reflectarrays such as contoured beam, near-field focusing, and RCS reduction are reviewed.

A Study on W-Band Monopulse Tracking System using Reflectarray Antenna (반사배열 안테나를 이용한 W대역 모노펄스 추적 시스템에 관한 연구)

  • Song, Hyejoo;Ko, Seulgi;Kim, Kichul;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.137-140
    • /
    • 2022
  • In this paper, we proposed a new W-band monopulse tracking system based on reflectarray antenna structure. The proposed reflectarray antenna monopulse tracking system consists of four feed horn antennas and a planar reflector using a microstrip reflectarray. The four feed horn antennas have a gain of 10 dBi and a half-power beam-width of 56 degrees symmetrically in the E/H plane. It was confirmed that the reflectarray antenna using one feed horn antenna has a size of 41.8 × 41.8 mm2, a gain of 26.8 dBi, and a half-power beam-width of about 5.6 degrees. The reflectarray monopulse tracking system using 4 feeding horn antennas is well matched from 75 GHz to 90 GHz, and the isolation is secured by more than 10 dB. Finally, the proposed system shows the tracking range of 5.98 degrees and the tracking error range was 0.02 degrees.