DOI QR코드

DOI QR Code

Researches on Microstrip Reflectarray Antennas

마이크로스트립 리플렉트어레이 안테나에 관한 연구

  • Yoon, Young Joong (Department of Electrical and Electronic Engineering, Yonsei University)
  • 윤영중 (연세대학교 전기전자공학과)
  • Received : 2015.10.07
  • Accepted : 2015.11.12
  • Published : 2015.11.30

Abstract

Microstrip reflectarray is an antenna which controls its radiation pattern with a number of reflective elements. Conventionally, the reflectarray has been researched to replace curved reflector antennas. In this paper, design theories of reflectarray is briefly introduced, and research trends of high gain and broadband reflectarrays are reviewed. To improve the gain of the reflectarrays, it is required that the reflection phase errors on the reflectarray surface be minimized. For this purpose, sufficiently wide reflection phase range and low phase sensitivity should be realized with the designed element. For bandwidth improvement, the reflection phase of the element should be linear with the frequency variation. In this paper, various researches to improve the reflection phase characteristics of the element for high gain and broadband reflectarrays, such as multi-layer and single-layer multi-resonant structures, are reviewed. Also, dual-reflectarray configuration for compact antenna design is reviewed. Finally, various applications of reflectarrays such as contoured beam, near-field focusing, and RCS reduction are reviewed.

마이크로스트립 리플렉트어레이는 다수의 반사소자를 이용하여 방사패턴을 조절하는 안테나로서, 일반적으로 곡면형 반사판 안테나를 대체하기 위하여 연구되어왔다. 본 논문에서는 리플렉트어레이에 관한 간략한 설계 이론을 정리하고, 고이득 및 광대역 리플렉트어레이의 연구동향을 살펴본다. 리플렉트어레이의 이득 특성을 개선하기 위해서는 리플렉트어레이에서 구현되는 반사위상의 오차를 최소화해야 하는데, 이를 위해서는 충분히 넓은 반사위상 범위 및 낮은 반사위상 민감도를 얻어야 한다. 리플렉트어레이의 대역폭을 확장하기 위해서는 반사소자의 반사위상이 주파수에 대해 선형적인 특성을 가지도록 설계해야 한다. 본 논문에서는 적층형 구조, 단층 다중공진 구조 등, 고이득 및 광대역 리플렉트어레이를 위해 반사소자의 반사위상 특성을 개선하고자 하는 다양한 연구에 대해 살펴본다. 또한, 안테나를 보다 소형화하기 위해 리플렉트어레이를 이중 반사판 형태로 구현하는 연구를 소개하고, 마지막으로 Contoured 빔, 근거리 빔 집중, RCS 감소 등 다양한 리플렉트어레이 적용 사례에 대해 정리한다.

Keywords

References

  1. C. A. Balanis, Antenna Theory: Analysis and Design, Hoboken, NJ: Wiley, 2005.
  2. J. Huang, J. A. Encinar, Reflectarray Antennas, Hoboken, NJ: Wiley-IEEE, 2008.
  3. H. Rajagopalan, Y. Rahmat-Samii, "On the reflection characteristics of a reflectarray element with low-loss and high-loss substrates", IEEE Antennas Propag. Mag., vol. 52, no. 4, pp. 73-89, Aug. 2010. https://doi.org/10.1109/MAP.2010.5638237
  4. M. Bozzi, S. Germani, and L. Perregrini, "Performance comparison of different element shapes used in printed reflectarrays", IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 219-222, 2003. https://doi.org/10.1109/LAWP.2003.819687
  5. R. E. Hani, J. -J. Laurin, "Specular reflection analysis for off-specular reflectarray antennas", IEEE Trans. Antennas Propag., vol. 61, no. 7, pp.3575-3581, Jul. 2013. https://doi.org/10.1109/TAP.2013.2243095
  6. E. Almajali, D. A. McNamara, J. Shaker, and M. R. Chaharmir, "Feed image lobes in offset-fed reflectarrays: diagnosis and solution", IEEE Trans. Antennas Propag., vol. 62, no. 1, pp.216-227, Jan. 2014. https://doi.org/10.1109/TAP.2013.2288977
  7. J. A. Encinar, "Design of two-layer printed reflectarrays using patches of variable size", IEEE Trans. Antennas Propag., vol. 49, pp. 1403-1410, Oct. 2001. https://doi.org/10.1109/8.954929
  8. J. A. Encinar, J. A. Zornoza, "Broadband design of three-layer printed reflectarrays", IEEE Trans. Antennas Propag., vol. 51, pp. 1662-1664, July 2003. https://doi.org/10.1109/TAP.2003.813611
  9. Q. Y. Li, Y. C. Jiao, and G. Zhao, "A novel microstrip rectangular patch/ring combination reflectarray element and its application", IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1119-1122, 2009. https://doi.org/10.1109/LAWP.2009.2033620
  10. B. Ma, M. Xia, and L. Yan, "Design of a K‐band reflectarray antenna using double square ring elements", Microw. Opt. Technol. Lett., vol. 54, no. 2, pp. 394-398, Feb. 2012. https://doi.org/10.1002/mop.26535
  11. M. E. Bialkowski, K. H. Sayidmarie, "Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size", IEEE Trans. Antennas Propag., vol. 56, no. 11, pp. 3366-3372, Nov. 2008. https://doi.org/10.1109/TAP.2008.2005470
  12. J. H. Yoon, J. Kim, Y. J. Yoon, W. Lee, and J. So, "Single-layer reflectarray with combination of element types", Electron. Lett., vol. 50, no. 8, pp. 574-576, Apr. 2014. https://doi.org/10.1049/el.2014.0435
  13. J. H. Yoon, Y. J. Yoon, W. Lee, and J. So, "W-band reflectarray antenna for improvement of radiation characteristics", in Proc. Global Symp. on Milli. Waves, Seoul, Korea, May 2014.
  14. J. H. Yoon, E. Kim, Y. J. Yoon, W. Lee, and J. So, "Reflectarray with EBG elements for improved radiation characteristics", Electron. Lett., vol. 49, no. 16, pp. 975-976, Aug. 2013. https://doi.org/10.1049/el.2013.1115
  15. J. H. Yoon, Y. J. Yoon, W. Lee, and J. So, "Square ring element reflectarrays with improved radiation characteristics by reducing reflection phase sensitivity", IEEE Trans. Antennas Propag., vol. 63, no. 2, pp. 814-818, Feb. 2015. https://doi.org/10.1109/TAP.2014.2379919
  16. D. M. Pozar, "Wideband reflectarrays using artificial impedance surfaces", Electron. Lett., vol. 43, no. 3, pp. 148-149, Feb. 2007. https://doi.org/10.1049/el:20073560
  17. P. Nayeri, F. Yang, and A. Z. Elsherbeni, "Bandwidth improvement of reflectarray antennas using closely spaced elements", Progr. Electromagn. Res. C, vol. 18, pp. 19-29, 2011. https://doi.org/10.2528/PIERC10091505
  18. P. Nayeri, F. Yang, and A. Z. Elsherbeni, "Broadband reflectarray antennas using double-layer subwavelength patch elements", IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1139-1142, 2010. https://doi.org/10.1109/LAWP.2010.2094178
  19. J. H. Yoon, Y. J. Yoon, W. Lee, and J. So, "Broadband microstrip reflectarray with five parallel dipole elements", IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1109-1112, 2015. https://doi.org/10.1109/LAWP.2015.2394810
  20. J. H. Yoon, Y. J. Yoon, W. Lee, and J. So, "W-band microstrip reflectarray with double-cross element for bandwidth improvement", in Proc. Global Symp. on Milli. Waves, Montreal, Canada, May 2015.
  21. Q. Y. Chen, S. W. Qu, X. Q. Zhang, and M. Y. Xia, "Low-profile wideband reflectarray by novel elements with linear phase response", IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1545-1547, 2012. https://doi.org/10.1109/LAWP.2012.2232899
  22. Q. Y. Chen, S. W. Qu, J. F. Li, Q. Chen, and M. Y. Xia, "An X-band reflectarray with novel elements and enhanced bandwidth", IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 317-320, 2013. https://doi.org/10.1109/LAWP.2013.2249652
  23. R. Florencio, R. R. Boix, E. Carrasco, J. A. Encinar, M. Barba, and G. Perez-Palomino, "Broadband reflectarrays made of cells with three coplanar parallel dipoles", Microw. Opt. Tech. Lett., vol. 56, no. 3, pp. 748-753, 2014. https://doi.org/10.1002/mop.28171
  24. A. Vosoogh, K. Keyghobad, A. Khaleghi, and S. Mansouri, "A high-efficiency Ku-band reflectarray antenna using single-layer multiresonance elements", IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 891-894, 2014. https://doi.org/10.1109/LAWP.2014.2321035
  25. M. R. Chaharmir, J. Shaker, "Broadband reflectarray with combination of cross and rectangle loop elements", Electron. Lett., vol. 44, no. 11, pp. 658-659, 2008. https://doi.org/10.1049/el:20080910
  26. M. R. Chaharmir, J. Shaker, and H. Legay, "Broadband design of a single layer large reflectarray using multi cross loop elements", IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 3363-3366, Oct. 2009. https://doi.org/10.1109/TAP.2009.2029600
  27. M. A. Milon, D. Cadoret, R. Gillard, and H. Legay, "Surrounded-element approach for the simulation of reflectarray radiating cells", Microw. Antennas Propag., vol. 1, no. 2, pp. 289-293, 2007. https://doi.org/10.1049/iet-map:20050291
  28. M. Zhou, S. B. Sorensen, E. Jorgensen, P. Meincke, O. S. Kim, and O. Breinbjerg, "An accurate technique for calculation of radiation from printed reflectarrays", IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1081-1084, 2011. https://doi.org/10.1109/LAWP.2011.2170652
  29. J. H. Yoon, J. Kim, Y. J. Yoon, J. Shin, and J. So, "Researches on radiation performance improvement of microstrip reflectarray antennas", in Proc. Asia Pacific Microw. Conf., Seoul, Korea, Dec. 2013.
  30. N. Misran, R. Cahill, and V. Fusco, "Reflection phase response of microstrip stacked ring elements", Electron. Lett., vol. 38, no. 8, pp. 356-357, Apr. 2002. https://doi.org/10.1049/el:20020257
  31. J. H. Yoon, Y. J. Yoon, W. Lee, and J. So, "Axially symmetric dual-reflectarray antennas", Electron. Lett., vol. 50, no. 13, pp. 908-910, Jun. 2014. https://doi.org/10.1049/el.2014.0977
  32. D. M. Pozar, S. D. Targonski, and R. Pokuls, "A shaped-beam microstrip patch reflectarray", IEEE Trans. Antennas Propag., vol. 47, no. 7, pp. 1167-1173, July 1999. https://doi.org/10.1109/8.785748
  33. J. A. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, "A transmit-receive reflectarray antenna for direct broadcast satellite applications", IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3255-3264, Sep. 2011. https://doi.org/10.1109/TAP.2011.2161449
  34. M. Zhou, O. Borries, and E. Jorgensen, "Design and optimization of a single-layer planar transmit-receive contoured beam reflectarray with enhanced performance", IEEE Trans. Antennas Propag., vol. 63, no. 4, pp. 1247-1254, Apr. 2015. https://doi.org/10.1109/TAP.2014.2365039
  35. M. Zhou, S. B. Sorensen, O. S. Kim, E. Jorgensen, P. Meincke, and O. Breinbjerg, "Direct optimization of printed reflectarrays for contoured beam satellite antenna applications", IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1995-2004, 2013. https://doi.org/10.1109/TAP.2012.2232037
  36. M. Zhou, S. B. Sorensen, O. S. Kim, E. Jorgensen, P. Meincke, O. Breinbjerg, and G. Toso, "The generalized direct optimization technique for printed reflectarrays", IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1690-1700, 2014. https://doi.org/10.1109/TAP.2013.2254446
  37. H. -T. Chou, T. -S. Hung, N. -N. Wang, H. -H. Chou, C. Tung, and P. Nepa, "Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications", IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 1013-1018, Mar. 2011. https://doi.org/10.1109/TAP.2010.2103030
  38. A. Buffi, A. A. Serra, P. Nepa, H.-T. Chou, and G. Manara, "A focused planar microstrip array for 2.4 GHz RFID readers", IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1536-1544, May 2010. https://doi.org/10.1109/TAP.2010.2044331
  39. H. Y. Yang, J. A. Castaneda, and N. G. Alexopoulos, "The RCS of a microstrip patch on an arbitrarily biased ferrite substrate", IEEE Trans. Antennas Propag., vol. 49, no. 12, pp. 1610-1614, Dec. 1993. https://doi.org/10.1109/TAP.2001.982435
  40. T. Wu. "Radar cross section of arbitrarily shaped bodies of revolution", Proceedings of the IEEE, vol. 77, no. 5, pp. 735-740, 1989. https://doi.org/10.1109/5.32063
  41. H. C. Strifors, G. C. Gaunaurd, "Scattering of electromagnetic pulses by simple-shaped targets with radar cross section modified by a dielectric coating", IEEE Trans. Antennas Propag., vol. 46, no. 6, pp. 1252-1262, Sep. 1998. https://doi.org/10.1109/8.719967
  42. M. Paquay, J. C. Iriarte, I. Ederra, and R. Gonzalo, "Thin AMC structure for radar cross-section reduction", IEEE Trans. Antennas Propag., vol. 55, no. 12, pp. 3630-3638, Dec. 2007. https://doi.org/10.1109/TAP.2007.910306
  43. 임요한, 김영섭, 윤영중, "Electromagnetic gradient surface의 입사각과 편파에 따른 RCS 특성 분석", 한국전자파학회논문지, 22(9), pp. 840-846, 2011년 9월. https://doi.org/10.5515/KJKIEES.2011.22.9.840
  44. 김우중, 서형필, 김영섭, 윤영중, "패턴 합성을 통한 단일 곡면 구조에서의 RCS 감소 기술에 관한 연구", 한국전자파학회논문지, 24(4), pp. 366-373, 2013년 4월. https://doi.org/10.5515/KJKIEES.2013.24.4.366