• 제목/요약/키워드: Microscopic tensile

검색결과 129건 처리시간 0.023초

음향방출기법을 이용한 A106 탄소강의 부식평가 (Evaluation on Corrosion of A106 Carbon Steel using AE Technique)

  • 이진경;이상필
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.100-105
    • /
    • 2008
  • A106 Carbon Steel has recently been used as the material for pipes, nozzles, and tank shells in nuclear power plants. Its corrosion resistance gives the steel many advantages for use in structures under high temperature and high pressure. This steel is also expected to be used as a structural material in the shipbuilding industry for applications involving severe conditions, such as high temperature and pressure. In this study, the mechanical properties of A106 carbon steel were evaluated in regard to its corrosion times. The tensile and yielding strengths decreased as the corrosion time increased. In particular, the tensile strength was influenced by corrosion. In addition, an acoustic emission (AE) technique was used to clarify the microscopic damage to specimens that had undergone corrosion for a certain period. It was found that AE parameters, such as events, energy, duration time, and amplitude were useful for evaluating the degree of damage and remaining life of the corroded specimen. Various properties of the waveform and frequency range were also seen, based on the degree of damage to the specimen from the corrosion time.

Acoustic Emission 의 섬유파단 Source Location을 이용한 Carbon Fiber/Epoxy Composites의 계면특성 및 비파괴적 평가 (Interfacial and Nondestructive Evaluation of Single Carbon Fiber/Epoxy Composites by Fiber Fracture Source Location using Acoustic Emission)

  • Kong, Jin-Woo;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.116-120
    • /
    • 2001
  • Fiber fracture is one of the dominant failure phenomena to determine total mechanical properties in composites. Fiber fracture locations were measured by optical microscopic method and acoustic emission (AE) as functions of matrix toughness and surface treatment by the electrodeposition (ED), and then two methods were compared. Two AE sensors were attached on the epoxy specimen and fiber fracture signals were detected with elapsed time. The interfacial shear stress (IFSS) was measured using tensile fragmentation test and AE system. In ED-treated case, the number of the fiber fracture measured by an optical method and AE was more than that of the untreated case. The signal number measured by AE were rather smaller than the number of fragments measured by optical method, since some fiber fracture signals were lost while AE detection. However, one-to-one correspondence between the x-position location by AE and real break positions by optical method was generally established well. The fiber break source location using AE can be a valuable method to measure IFSS for semi- or nontransparent matrix composites nondestructively (NDT).

  • PDF

Thermal and Mechanical Properties of Waste Ground Nut-shell Reinforced Polyester Composites

  • Prabhakar, M.N.;Shah, Atta ur rehman;Song, Jung-Il
    • Composites Research
    • /
    • 제28권3호
    • /
    • pp.118-123
    • /
    • 2015
  • In the current study explain about the bio-based composites made by groundnut shell as reinforcement with polyester resin matrix. Groundnut shell is an abundantly available natural waste byproduct and poly ester resin is widely used to fabricate of composites for good balance of mechanical properties because it is relatively low price and ease of handling. Evaluate the mechanical properties of manufactured groundnut shell/polyester composites by varying the amounts (wt %) of groundnut shell. Particulate shell reinforced polyester composites incorporating varying amounts of groundnut shell (5, 10, 15 and 20%) were characterized for their tensile strength, flexural strength, and impact strength. The mechanical properties improved with increasing particle loading up to 15% and decreased thereafter. Increasing in strength with increased particle shell loading was attributed to increase in surface area which enhanced load transfer between the polyester matrix and ground shall particulates. Scanning electron microscopic studies have been carried out to study the morphology of the composite. Thermal studies and water absorption properties of the composites also studied in this paper.

수소화물에 의한 Zr-2.5Nb 압력관의 상온 수소취화 거동 (Hydrogen Embrittlement of Zr-2.5Nb Pressure Tube at Room Temperature by Precipitated Hydride)

  • 오동준;부명환;김영석
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.455-463
    • /
    • 2003
  • The aim of this study is to investigate the hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube at room temperature. The transverse tensile and fracture toughness tests were performed at various hydrogen concentrations using transverse tensile specimens and CCT (curved compact tension) specimens. These specimens were directly machined from the pressure tube retaining original curvatures. Based on the results of these tests. the hydrogen embrittlement phenomenon was clearly observed and fracture toughness parameters of Zr-2.5Nb pressure tube materials such as, $K_{J(0.2)}$.$J_{ML}$.dJ/da, were dramatically decreased with the increasement of the hydrogen concentration. From microscopic observation by SEM and TEM, it was also revealed that various shapes dimples, fissures and quasi-cleavage were found at the hydrogen-absorbed materials with hydrides while traditional shape dimples were generally located at the as-received materials Through the comparison of the hydride and fissure lengths with the hydrogen concentration the new evaluation method of hydrogen embrittlement was suggested.

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • 제16권2호
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

목조건축 해체 고목재의 재질특성 및 강도성능 (Wood Quality and Strength Properties of Old Structural Members)

  • 황권환;박병수;박문재
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권1호
    • /
    • pp.36-44
    • /
    • 2008
  • 목조건축물로부터 해체된 고목재를 해당 건축물의 복원이나 새로운 건축물에 재사용하기 위해서는 열화 및 부후 부위를 제외한 건전재의 재질 및 강도성능에 대한 평가가 필요하다. 트러스 현재로 사용된 부재와 사찰에 사용된 부재에 대해 현미경으로 수종식별을 행하고 KS 기준에 따라 각종 물성 및 강도 시험을 행하여 문헌에 의한 결과와 비교 검토하였다. 잎갈나무(Korean larch)는 재질 및 강도 성능이 기존 문헌값보다 높게 나타났으며, 소나무(Korean red pine)와 가문비나무(Yezo spruce)의 경우 해체재의 강도성능이 대체적으로 낮게 나타났다. 육안에 의한 건전부위의 시험편 내의 조직적 열화는 현미경적으로도 관찰되지 않았다. 인장시험편의 중앙부 두께가 5 mm에서 3 mm로 변함에 따라 인장강도가 증가하여 시험편 치수에 대한 검토가 필요한 것으로 판단되었으며, 압축 및 휨 시험법은 현행 기준으로도 적합한 수준이었다. 고목재류에 대한 구체적인 기초 강도 성능평가를 위한 시험방법 및 철물접합부의 접합성능에 대한 차후 연구 검토가 필요한 것으로 평가되었다.

SM490TMC 극후판(120mm) 강재의 가스실드아크용접(FCAW)을 이용한 용접성 및 이음성능에 관한 연구 (A Study of Weldability and Welded Joint Performance on the Gas Shield Arc Welding (FCAW) of SM490TMC Steel Plate (120mm))

  • 김성배;홍형주;최영한;김상섭
    • 한국강구조학회 논문집
    • /
    • 제29권6호
    • /
    • pp.455-465
    • /
    • 2017
  • 본 연구에서는 SM490 TMC 120mm 강재의 FCAW 용접성 및 이음성능을 확인하기 위해 공시체를 제작하고 10종의 시험을 실시하였다. 용접부 화학성분시험, 용착금속부 인장시험, 용접부 인장시험, 충격시험 결과는 KS를 만족하였다. 특히, 용접부 인장시험 결과, 모재에서 파단이 발생하였으며, 소요성능을 충분히 발휘하는 것으로 나타났다. 또한, 용접부 굽힘시험, 경도시험, 매크로시험, 마이크로시험 및 열영향부 최고경도시험 결과, FCAW는 양호한 용접부로 나타났다.

Mechanical Strength Evaluation of A53B Carbon Steel Subjected to High Temperature Hydrogen Attack

  • Kim, Maan-Won;Lee, Joon-Won;Yoon, Kee-Bong;Park, Jai-Hak
    • International Journal of Safety
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2007
  • In this study mechanical strength of A53B carbon steel was analyzed using several types of test specimens directly machined from oil recycling pipe experienced a failure due to hydrogen attack in chemical plants. High temperature hydrogen attack (HTHA) is the damage process of grain boundary facets due to a chemical reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow on grain boundaries forming intergranular micro cracks. Microscopic optical examination, tensile test, Charpy impact test, hardness measurement, and small punch (SP) test were performed. Carbon content of the hydrogen attacked specimens was dramatically reduced compared with that of standard specification of A53B. Traces of decarburization and micro-cracks were observed by optical and scanning electron microscopy. Charpy impact energy in hydrogen attacked part of the pipe exhibited very low values due to the decarburization and micro fissure formation by HTHA, on the other hand, data tested from the sound part of the pipe showed high and scattered impact energy. Maximum reaction forces and ductility in SP test were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Finite element analyses for SP test were performed to estimate tensile properties for untested part of the pipe in tensile test. And fracture toughness was calculated using an equivalent strain concept with SP test and finite element analysis results.

랫드에서 고농도의 Carboxymethyl Chitosan이 복벽 유착 예방에 미치는 영향 (Effect of high concentrations of carboxymethyl chitosan on preventing formation of peritoneal adhesion in rats)

  • 권영삼;장환수;정재훈;배재성;이정우;강한샘;양정훈;이문학;장광호
    • 대한수의학회지
    • /
    • 제43권1호
    • /
    • pp.151-156
    • /
    • 2003
  • The objective of this study was to determine the effective concentration of carboxymethyl chitoaan(CMC) solution on preventing intraperitoneal adhesions. In this study, 60 rats were divided into four groups : an untreated control group and three experimental groups that were treated with 3 ml of 3, 5, and 7% CMC solution. Adhesions were induced by suturing both the ileal serosa and peritoneum scraped until petechial bleeding occurred. CMC solutions were instilled intraperitoneally immediately before closure of the peritoneomuscular layer. The tensile strength of formed adhesions was measured by using a computerized tensiometer. Histopathological changes of adhesions were evaluated by hematoxylin-eosin for light microscopic examination and Massons's trichrom staining for collagen fibers. All of CMC solutions reduced significantly the tensile strength of the adhesions. CMC inhibited the increase of inflammatory cell infiltration and damage of adhesion spot, and accelerated the collagen synthesis and neovascuiarization. No significant differences were observed among all of CMC concentration at inhibiting adhesion formation. Therefore, we could conclude that 3% CMC, the lowest concentration adopted in this study, was appropriate to prevent the formation of peritoneal adhesion.

High Temperature Creep Properties of Al-Al4C3-Al2O3 Alloy by Mechanical Alloying

  • Han, Chang-Suk;Seo, Han-Byeol
    • 한국재료학회지
    • /
    • 제26권7호
    • /
    • pp.370-375
    • /
    • 2016
  • Tensile tests and creep tests were carried out at high temperatures on an Al-$Al_4C_3$ alloy prepared by mechanical alloying technique. The material contains about 2.0% carbon and 0.9% oxygen in mass percent, and the volume fractions of $Al_4C_3$ and $Al_2O_3$ particles are estimated at 7.4 and 1.4%, respectively, from the chemical composition. Minimum creep rate decreased steeply near two critical stresses, ${\sigma}_{cl}$ (the lower critical stress) and ${\sigma}_{cu}$ (the upper critical stress), with decreasing applied stress at temperatures below 723 K. Instantaneous plastic strain was observed in creep tests above a critical stress, ${\sigma}_{ci}$, at each test temperature. ${\sigma}_{cu}$ and ${\sigma}_{ci}$ were fairly close to the 0.2% proof stress obtained by tensile tests at each test temperature. It is thought that ${\sigma}_{cl}$ and ${\sigma}_{cu}$ correspond to the microscopic yield stress and the macroscopic yield stress, respectively. The lower critical stress corresponds to the local yield stress needed for dislocations to move in the soft region within subgrains. The creep strain in the low stress range below 723 K arises mainly from the local deformation of the soft region. The upper critical stress is equivalent to the macroscopic yield stress necessary for dislocations within subgrains or in subboundaries; this stress can extensively move beyond subboundaries under a stress above the critical point to yield a macroscopic deformation. At higher temperatures above 773 K, the influence of the diffusional creep increases and the stress exponent of the creep rate decreases.