• Title/Summary/Keyword: Microscopic interface

Search Result 113, Processing Time 0.026 seconds

A CONFOCAL LASER SCANNING MICROSCOPIC STUDY ON THE INTERFACE BETWEEN TOOTH COLORED RESTORATIVE MATERIALS AND DENTIN (공초점레이저주사현미경을 이용한 심미수복재와 상아질의 접착계면에 관한 연구)

  • Park, Byung-Chul;Cho, Young-Gon;Moon, Joo-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2000
  • The purpose of this study was to evaluate on the interfacial morphology between dentin and restorative materials. In this in vitro study, the cavity wall restorated with 3 different kinds of tooth colored restorative materials [resin-modified Glass Ionomer cement (Fuji II LC), composite resin (Z-100), compomer (Dyract)]. The thirty extracted human molar teeth without caries and/or restorations are used. The experimental teeth were randomly divided into three groups of ten teeth each. In each group, Wedge shaped cavities (width: 3mm, length: 2mm, depth: 1.5mm) were prepared at the cementoenamel junction on buccal and lingual surfaces. The adhesive of composite resin were mixed with rhodamine B. Primer of composite resin, Prime & Bond 2.1 of Dyract and liquid of Fuji II LC were mixed with fluorescein. In group 1, the cavity wall was treatment with dentin conditioner, and then restorated with Fuji II LC. In group 2, the cavity wall was treatment with Prime & Bond 2.1 and then restorated with Dyract. In group 3, the cavity wall was etching with 10% maleic acid, applied with primer and bonding agent and then restorated with Z-100. The interface between dentin and restorative materials was observed by fluoresence imaging with a confocal laser scanning microscope. The results were as follows : 1. In Glass ionomer group, adaptation of resin modified Glass-ionomer restoration against cavity wall is tight, but the crack formed inside of restoration were observed. 2. In Dyract group, the penetration of resin tag is shorter and the width of hybrid layer is narrower than composite resin group. 3. In Z-100 group, primer penetrated deeply through dentinal tubule. Also bonding agent was penetrated along the primer, but the penetration length is shorter than primer part, and in 3-D image, the resin tag is conical shape and lateral branch is observed.

  • PDF

Alkali Treatment Effect of Kenaf Fibers on the Characteristics of Kenaf/PLA Biocomposites (Kenaf 섬유의 알칼리처리가 Kenaf/PLA 바이오복합재료의 특성에 미치는 영향)

  • Seo, Jeong Min;Cho, Donghwan;Park, Won Ho
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.1-11
    • /
    • 2008
  • In the present study, kenaf fibers were treated with sodium hydroxide using soaking and ultrasonic methods prior to biocomposite processing, respectively. The effect of alkali treatment on the kenaf-PLA interfacial adhesion and mechanical and thermal characteristics of kenaf/poly(lactic acid) biocomposites was investigated in terms of their interfacial shear strength, flexural properties, dynamic mechanical properties and thermal stability and also microscopic observations of kenaf fibers and the composite fracture surfaces. As a result, use of both soaking and ultrasonic methods for treating kenaf fiber surfaces played a role in increasing the fiber-matrix adhesion and the mechanical properties of the biocomposites. Their characteristics depended not only on the fiber surface treatment method but also on the treatment condition like alkali concentration and treatment time.

  • PDF

REWETTING EFFECT OF WATER-BASED PRIMER ON THE AIR-DRIED DENTIN (공기건조된 상아질에 대한 수분함유 primer의 재습윤효과)

  • Kim, Ki-Young;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.498-503
    • /
    • 2003
  • The purpose of this study was to evaluate the rewetting effect of water-based primer on the air-dried dentin. In this in vitro study, freshly extracted non-caries human molars and three-step adhesive system(SBMP) were used. Freshly extracted non-caries human molars and three-step adhesive system(SBMP) were used. Flat occlusal dentin surface were prepared using low-speed diamond saw, Prepared teeth were randomly divided into three groups. Group 1.(W): etched(35% phosphoric acid for 15s) and blot-dried, Group 2.(5D): 5s air-dried, Group 3.(30D): 30s ail-dried, To obtain color contrast in CLSM observation, primer was mixed with rhodamine B and bonding resin was mixed with fluorescein. Microscopic sample of each group were obtained after longitudinal section. Morphological investigation of resin-dentin interface and thickness of hybrid layer measurement using CLSM were done. Microtensile bond strength for each specimen was measured. Specimen were observed under microscope to examine the failure patterns of interface between resin and dentin. The results of this study were as follows: 1. The results(mean) of Thickness of hybrid layer were W:19.67, 5D:20.9, 30D:10$\mu\textrm{m}$. Only 30D had statistically significant differences to Wand 5D(P<0.05). 2. The results(mean) of Microtensile bond strength were W:16.02, 5D:14.69, 30D:11.14MPa. Only 30D had statistically significant differences to Wand 5D(P<0.05). 3. There were positive correlation between Thickness of hybrid layer and microtensile bond strength(P<0.05).

Microscopic characterization of pretransition oxide formed on Zr-Nb-Sn alloy under various Zn and dissolved hydrogen concentrations

  • Kim, Sungyu;Kim, Taeho;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.416-424
    • /
    • 2018
  • Microstructure of oxide formed on Zr-Nb-Sn tube sample was intensively examined by scanning transmission electron microscopy after exposure to simulated primary water chemistry conditions of various concentrations of Zn (0 or 30 ppb) and dissolved hydrogen ($H_2$) (30 or 50 cc/kg) for various durations without applying desirable heat flux. Microstructural analysis indicated that there was no noticeable change in the microstructure of the oxide corresponding to water chemistry changes within the test duration of 100 days (pretransition stage) and no significant difference in the overall thickness of the oxide layer. Equiaxed grains with nano-size pores along the grain boundaries and microcracks were dominant near the water/oxide interface, regardless of water chemistry conditions. As the metal/oxide interface was approached, the number of pores tended to decrease. However, there was no significant effect of $H_2$ concentration between 30 cc/kg and 50 cc/kg on the corrosion of the oxide after free immersion in water at $360^{\circ}C$. The adsorption of Zn on the cladding surface was observed by X-ray photoelectron spectroscopy and detected as ZnO on the outer oxide surface. From the perspective of $OH^-$ ion diffusion and porosity formation, the absence of noticeable effects was discussed further.

Effects of dentin surface preparations on bonding of self-etching adhesives under simulated pulpal pressure

  • Chantima Siriporananon;Pisol Senawongse;Vanthana Sattabanasuk;Natchalee Srimaneekarn;Hidehiko Sano;Pipop Saikaew
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.4.1-4.13
    • /
    • 2022
  • Objectives: This study evaluated the effects of different smear layer preparations on the dentin permeability and microtensile bond strength (µTBS) of 2 self-etching adhesives (Clearfil SE Bond [CSE] and Clearfil Tri-S Bond Universal [CTS]) under dynamic pulpal pressure. Materials and Methods: Human third molars were cut into crown segments. The dentin surfaces were prepared using 4 armamentaria: 600-grit SiC paper, coarse diamond burs, superfine diamond burs, and carbide burs. The pulp chamber of each crown segment was connected to a dynamic intra-pulpal pressure simulation apparatus, and the permeability test was done under a pressure of 15 cmH2O. The relative permeability (%P) was evaluated on the smear layer-covered and bonded dentin surfaces. The teeth were bonded to either of the adhesives under pulpal pressure simulation, and cut into sticks after 24 hours water storage for the µTBS test. The resin-dentin interface and nanoleakage observations were performed using a scanning electron microscope. Statistical comparisons were done using analysis of variance and post hoc tests. Results: Only the method of surface preparation had a significant effect on permeability (p < 0.05). The smear layers created by the carbide and superfine diamond burs yielded the lowest permeability. CSE demonstrated a higher µTBS, with these values in the superfine diamond and carbide bur groups being the highest. Microscopic evaluation of the resin-dentin interface revealed nanoleakage in the coarse diamond bur and SiC paper groups for both adhesives. Conclusions: Superfine diamond and carbide burs can be recommended for dentin preparation with the use of 2-step CSE.

Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid

  • Hoda S. Ismail;Brian R. Morrow;Ashraf I. Ali;Rabab El. Mehesen;Franklin Garcia-Godoy;Salah H. Mahmoud
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.36.1-36.17
    • /
    • 2022
  • Objectives: This study aimed to evaluate the effect of aging on the marginal quality of glass hybrid (GH) material used to elevate dentin gingival margins, and to analyze the consistency of the results obtained by 3 in vitro methods. Materials and Methods: Ten teeth received compound class II cavities with subgingival margins. The dentin gingival margins were elevated with GH, followed by resin composite. The GH/gingival dentin interfaces were examined through digital microscopy, scanning electron microscopy (SEM) using resin replicas, and according to the World Dental Federation (FDI) criteria. After initial evaluations, all teeth were subjected to 10,000 thermal cycles, followed by repeating the same marginal evaluations and energy dispersive spectroscopy (EDS) analysis for the interfacial zone of 2 specimens. Marginal quality was expressed as the percentage of continuous margin at ×200 for microscopic techniques and as the frequency of each score for FDI ranking. Data were analyzed using the paired sample t-test, Wilcoxon signed-rank test, and Pearson and Spearmen correlation coefficients. Results: None of the testing techniques proved the significance of the aging factor. Moderate and strong significant correlations were found between the testing techniques. The EDS results suggested the presence of an ion-exchange layer along the GH/gingival dentin interface of aged specimens. Conclusions: The marginal quality of the GH/dentin gingival interface defied aging by thermocycling. The replica SEM and FDI ranking results had stronger correlations with each other than either showed with the digital microscopy results.

Distribution of Calcium Hydroxide at the ITZ between Steel and Concrete

  • Ann Ki-Yong;Kim Hong-Sam;Kim Yang-Bae;Moon Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.481-485
    • /
    • 2005
  • The present study examines the distribution of calcium hydroxide, unhydrated cement grain and porosity at the steel-concrete interface. The formation of calcium hydroxide has been confirmed by microscopic analysis using BSE images containing the ITZ between the steel and concrete. It was found that calcium hydroxide does not form a layer on the steel surface, different from the hypothesis that has been available in investigating the corrosion of steel in concrete, ranging from 5 to $10\%$ within the steel surface. Moreover, the high level of porosity at the ITZ was observed, accounting for $30\%$, which may reduce the buffering capacity of cement hydration products against a local fall in the pH. These findings may imply that the mole of ($Cl^-$) :($OH^-$) in pore solution as chloride threshold level lead to wrong judgement or to a wide range of values.

Effects of Hybrid Coat on shear bond strength of five cements: an in-vitro study

  • Guo, Yue;Zhou, Hou-De;Feng, Yun-Zhi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • PURPOSE. To evaluate the sealing performance of Hybrid Coat and its influence on the shear bond strength of five dentin surface cements. MATERIALS AND METHODS. Six premolars were pretreated to expose the dentin surface prior to the application of Hybrid Coat. The microscopic characteristics of the dentinal surfaces were examined with scanning electron microscopy (SEM). Then, 40 premolars were sectioned longitudinally, and 80 semi-sections were divided into a control group (untreated) and a study group (treated by Hybrid Coat). Alloy restoration was bonded to the teeth specimen using five different cements. Shear bond strength was measured by the universal testing machine. The fracture patterns and the adhesive interface were observed using a stereomicroscope. RESULTS. SEM revealed that the lumens of dentinal tubules were completely occluded by Hybrid Coat. The Hybrid Coat significantly improved the shear bond strength of resin-modified glass ionomer cement (RMGIC) and resin cement (RC) but weakened the performance of zinc phosphate cement (ZPC), zinc polycarboxylate cement (ZPCC) and glass ionomer cement (GIC). CONCLUSION. Hybrid Coat is an effective dentinal tubule sealant, and therefore its combined use with resin or resin-modified glass ionomer cements can be applied for the prostheses attachment purpose.

Wear Behavior of TiN Coatings Deposited on High Speed Steel and Alloy Tool Steel (TiN 코팅된 고속도강과 합금공구강의 마멸거동)

  • 김석삼;서창민;박준목
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.705-712
    • /
    • 1995
  • The wear characteristics and wear mechanisms in TiN coating deposited on high speed steel and alloy tool steel by ion plating were investigated. Pin on V-block wear tester was used for a wear test method. The specimen was composed of three kinds of high speed steel and alloy tool steel which had different hardness by changing the heat treating condition. Three kinds of coating thickness were also applied to each specimen. Microscopic observation of worn surfaces was made by SEM. The scratch test of coating surface by the ion plating showed that critical load to break the coating interface was greater than 50N. The critical load increased with both substrate hardness and coating thickness. The wear resistance of TiN coated high speed steel became 10 times greater than that of non-coated ones. SEM observation showed that leading edge of contact was compressive and trailing edge was under maximum tensile stress and then surface cracking broke out perpendicular to sliding direction.

Comparing Microscale Behaviors of Block Copolymer with Polymer Blend Thin Films under Electric Fields (전기장 하에서의 블록 공중합체와 고분자 블렌드의 미세 구조 변화 거동 비교)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.395-398
    • /
    • 2018
  • In this work, profound microscale behaviors of block copolymer and polymer blend under electric field were investigated using microscopic methods and compared systematically. To this end, both the block copolymer and blend containing polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) were introduced. The two polymers have a similar dielectric constant. Under an identical experimental condition such as temperature, film thickness, field intensity, and exposure time, the polymer blend responded more sensitively than the block copolymer. The presence of covalent bond suppressed the mobility of constituents in block copolymer. This study will be essential for future research activities regarding behaviors of polymeric materials under external fields.