• Title/Summary/Keyword: Microsatellite Polymorphism

Search Result 161, Processing Time 0.024 seconds

Genetic diversity analysis in Chinese miniature pigs using swine leukocyte antigen complex microsatellites

  • Wu, Jinhua;Liu, Ronghui;Li, Hua;Yu, Hui;Yang, Yalan
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1757-1765
    • /
    • 2021
  • Objective: The swine leukocyte antigen (SLA) gene group, which is closely linked and highly polymorphic, has important biomedical significance in the protection and utilization of germplasm resources. However, genetic polymorphism analyses of SLA microsatellite markers in Chinese miniature pigs are limited. Methods: Eighteen pairs of microsatellite primers were used to amplify the SLA regions of seven miniature pig breeds and three wild boar breeds (n = 346) from different regions of China. The indexes of genetic polymorphism, including expected heterozygosity (He), polymorphic information content (PIC), and haplotype, were analyzed. The genetic differentiation coefficient (Fst) and neighbor-joining methods were used for cluster analysis of the breeds. Results: In miniature pigs, the SLA I region had the highest numbers of polymorphisms, followed by the SLA II and SLA III regions; the region near the centromere had the lowest number of polymorphisms. Among the seven miniature pig breeds, Diannan small-ear pigs had the highest genetic diversity (PIC value = 0.6396), whereas the genetic diversity of the Hebao pig was the lowest (PIC value = 0.4330). The Fst values in the Mingguang small-ear, Diannan small-ear, and Yunnan wild boars were less than 0.05. According to phylogenetic cluster analysis, the South-China-type miniature pigs clustered into one group, among which Mingguang small-ear pigs clustered with Diannan small-ear pigs. Haplotype analysis revealed that the SLA I, II, and III regions could be constructed into 13, 7, and 11 common haplotypes, respectively. Conclusion: This study validates the high genetic diversity of the Chinese miniature pig. Mingguang small-ear pigs have close kinship with Diannan small-ear pigs, implying that they may have similar genetic backgrounds and originate from the same population. This study also provides a foundation for genetic breeding, genetic resource protection, and classification of Chinese miniature pigs.

Use of Microsatellite Markers to Identify Commercial Melon Cultivars and for Hybrid Seed Purity Testing (Microsatellite Marker를 이용한 멜론 시판품종의 품종식별과 F1 순도검정)

  • Kwon, Yong-Sham;Hong, Jee-Hwa
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Microsatellite markers were used to identify 58 major commercial melon cultivars, and to assess hybrid seed purity of a melon breeding line known as '10H08'. A set of 412 microsatellite primer pairs were utilized for fingerprinting of the melon cultivars. Twenty-nine markers showed hyper-variability and could discriminate all cultivars on the basis of marker genotypes, representing the genetic variation within varietal groups. Cluster analysis based on Jaccard's distance coefficients using the UPGMA algorithm categorized 2 major groups, which were in accordance to morphological traits. The DNA bulks of female and male parents of breeding line '10H08' were tested with 29 primer pairs based on microsatellites to investigate purity testing of $F_1$ hybrid seeds, and 5 primer pairs exhibited polymorphism. One microsatellite primer pair (CMGAN12) produced unambiguous polymorphic bands among the parents. Among 192 seeds tested with CMGAN12, progeny possibly generated by self-pollination of the female parent were clearly distinguished from the hybrid progeny. These markers will be useful for fingerprinting melon cultivars and can help private seed companies to improve melon seed purity.

Construction of a Microsatellite DNA Profile Database for Pear Cultivars and Germplasm (배 품종 및 유전자원에 대한 Microsatellite DNA 프로파일 데이터베이스 구축)

  • Hong, Jee-Hwa;Shim, Eun-Jo;Kwon, Yong-Sham
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.98-107
    • /
    • 2017
  • A DNA profile database was constructed to investigate the genetic relatedness of 72 germplasm samples of Pyrus and related cultivars using microsatellite markers. Three P. pyrifolia, four P. commus, and one P. betulifolia cultivars with different morphological traits were screened using 387 pairs of microsatellite primers. A core set of 11 primer pairs was selected to obtain 133 polymorphic amplified fragments meeting three criteria: high polymorphism information contents (PIC), high repeatability, and distinct allele patterns. The number of alleles per locus ranged between 4 and 22. Average PIC was 0.743 (range: 0.557 - 0.879). Cluster analysis using the unweighted pair - group method with arithmetical average (UPGMA) separated the 72 pear cultivars and germplasm samples into four major groups: Chinese, European pears, and a cluster of 55 Asian pears that could be reclassify into two subcluster, I - $1^{st}$ and II - $2^{nd}$, according to pedigree information. Almost all of the cultivars were discriminated by 11 microsatellite marker genotypes. The microsatellite DNA profile database may be utilized as tool to verify distinctness, uniformity, and stability between candidate cultivar, and to verify in the distinctness of existing cultivars.

Molecular Characterization of Hallikar Breed of Cattle Using Microsatellite Markers

  • Kumar, S. Naveen;Jayashankar, M.R.;Nagaraja, C.S.;Govindaiah, M.G.;Saravanan, R.;Karthickeyan, S.M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.622-626
    • /
    • 2006
  • Molecular characterization of Hallikar, the native cattle breed of Karnataka, was undertaken using 19 cattle specific, highly polymorphic microsatellite markers recommended by FAO. The genomic DNA was subjected to PCR amplification and alleles were resolved through six per cent denaturing PAGE with a 10 bp DNA ladder followed by silver staining. Genotyping of animals was done based on allele size. The number of alleles ranged from three to nine with allele sizes ranging from 102 bp to 294 bp. These alleles were distributed in the frequency range between 0.0306 and 0.8673 in the population. The mean observed number of alleles was $6.368{\pm}1.4225$. The mean observed and expected heterozygosities were $0.7515{\pm}0.1734$ and $0.7850{\pm}0.1381$, respectively. The high heterozygosity observed implies presence of higher genetic variability within Hallikar breed. The PIC (Polymorphism Information Content) values ranged from 0.2322 (ETH152) to 0.8654 (ETH225). The percentage of polymorphic loci obtained was 100 as all the 19 microsatellite markers were found to be polymorphic. Except for ETH152, all the other loci had high PIC values, indicating that these markers are highly informative for characterization of Hallikar breed. The population was tested for Hardy-Weinberg equilibrium at 19 microsatellite loci, and at 74 per cent of the loci the population was found to be in disequilibrium.

Forensic Characterization of Four New Bovine Tri-nucleotide Microsatellite Markers in Korean Cattle (Hanwoo)

  • Sim, Yong Teak;Na, Jong Gil;Lee, Chul-Sang
    • Journal of Animal Science and Technology
    • /
    • v.55 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • We identified four new bovine tri-nucleotide microsatellite loci and analyzed their sequence structures and genetic parameters in 105 randomly selected Korean cattle (Hanwoo). Allele numbers of the loci B17S0808, B15S6253, B8S7996, and B17S4998 were 10, 11, 12, and 29, respectively. These alleles contained a simple or compound repeat sequences with some variations. Allele distributions of all these loci were in Hardy-Weinberg equilibrium (P > 0.05). Observed heterozygosity and expected heterozygosity ranged from 0.54 (B15S6253) to 0.92 (B17S4998) and from 0.599 (B15S6253) to 0.968 (B17S4998), respectively, and two measures of heterozygosity at each locus were highly correlated. Polymorphism information content (PIC) for these 4 loci ranged from 0.551 (B15S6253) to 0.932 (B17S4998), which means that all these loci are highly informative (PIC > 0.5). Other genetic parameters, power of discrimination (PD) and probability of exclusion (PE) ranged from 0.783 (B15S6253) to 0.984 (B17S4998) and from 0.210 (B15S6253) to 0.782 (B17S4998), respectively. Their combined PD and PE values were 0.9999968 and 0.98005176, respectively. Capillary electrophoresis revealed that average peak height ratio for a stutter was 13.89% at B17S0808, 26.67% at B15S6253, 9.09% at B8S7996, and 43.75% at B17S4998. Although the degree of genetic variability of the locus B15S6253 was relatively low among these four microsatellite markers, their favorable parameters and low peak height ratios for stutters indicate that these four new tri-nucleotide microsatellite loci could be useful multiplex PCR markers for the forensic and population genetic studies in cattle including Korean native breed.

Genetic characterization and population structure of six brown layer pure lines using microsatellite markers

  • Karsli, Taki;Balcioglu, Murat Soner
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Objective: The first stage in both breeding and programs for the conservation of genetic resources are the identification of genetic diversity in the relevant population. The aim of the present study is to identify genetic diversity of six brown layer pure chicken lines (Rhode Island Red [RIRI, RIRII], Barred Rock [BARI, BARII], Columbian Rock [COL], and line 54 [L-54]) with microsatellite markers. Furthermore, the study aims to employ its findings to discuss the possibilities for the conservation and sustainable use of these lines that have been bred as closed populations for a long time. Methods: In the present study, a total number of 180 samples belonging to RIRI (n = 30), RIRII (n = 30), BARI (n = 30), BARII (n = 30), L-54 (n = 30), and COL (n = 30) lines were genotyped using 22 microsatellite loci. Microsatellite markers are extremely useful tools in the identification of genetic diversity since they are distributed throughout the eukaryotic genome in multitudes, demonstrate co-dominant inheritance and they feature a high rate of polymorphism and repeatability. Results: In this study, we found all loci to be polymorphic and identified the average number of alleles per locus to be in the range between 4.41 (BARI) and 5.45 (RIRI); the observed heterozygosity to be in the range between 0.31 (RIRII) and 0.50 (BARII); and $F_{IS}$ (inbreeding coefficient) values in the range between 0.16 (L-54) and 0.46 (RIRII). The $F_{IS}$ values obtained in this context points out to a deviation from Hardy-Weinberg equilibrium due to heterozygote deficiency in six different populations. The Neighbour-Joining tree, Factorial Correspondence Analysis and STRUCTURE clustering analyzes showed that six brown layer lines were separated according to their genetic origins. Conclusion: The results obtained from the study indicate a medium level of genetic diversity, high level inbreeding in chicken lines and high level genetic differentiation between chicken lines.

Phylogenetic Analysis of Mitochondrial DNA Control Region in the Swimming Crab, Portunus trituberculatus

  • Cho, Eun-Min;Min, Gi-Sik;Kanwal, Sumaira;Hyun, Young-Se;Park, Sun-Wha;Chung, Ki-Wha
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.305-314
    • /
    • 2009
  • The control region of mitochondrial DNA (13516-14619) is located between srRNA and $tRNA^{lle}$ gene in swimming crab, Portunus trituberculatus. The present study was investigated the genetic polymorph isms of the control region in samples of P. trituberculatus collected at coastal waters of the Yellow Sea in Korea. A total of 300 substitution and indel polymorphic sites were identified. In addition to SNPs and indel variation, a hypervariable microsatellite motif was also identified at position from 14358 to 14391, which exhibited 10 alleles including 53 different suballeles. When the hypervariable microsatellite motif was removed from the alignment, 95 haplotypes were identified (93 unique haplotypes). The nucleotide and haplotype diversities were ranged from 0.024 to 0.028 and from 0.952 to 1.000, respectively. The statistically significant evidence for geographical structure was not detected from the analyses of neighbor-joining tree and minimum-spanning network, neither. This result suggest that population of P. trituberculatus are capable of extensive gene flow among populations. We believed that the polymorph isms of the control region will be used for informative markers to study phylogenetic relationships of P. trituberculatus.

Analysis of Genetic Diversity and Relationships of Korean Native Black Goat using Microsatellite Markers (초위성체 마커를 이용한 한국 재래 흑염소의 유전적 다양성 및 유연관계 분석)

  • Park, Byeong Kyu;Kim, Yi Seul;Seong, Jiyeon;Kong, Hong Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • The aim of this study was to assess the levels of genetic diversity and relationships of Korean native black goat (n = 58), compared with the exotic breed, Boer (n = 97). For the analysis of genetic characterization 11 microsatellite markers (MAF065, INRA063, CSRD247, OarFCB20, SRCRSP5, INRA006, ILSTS008, ILSTS011, INRA005, ILSTS087, SRCRSP8) were genotyped. The number of alleles was observed 3 (INRA005) to 10 (SRCRSP8) each markers. The mean expected and observed heterozygosity (Hexp and Hobs) and polymorphism information content (PIC) for the Korean native black goat breed varied from 0.551 to 0.860, 0.517 to 0.948 and 0.464 to 0.835, respectively. Principal Components Analysis (PCoA) and FCA results showed that Korean native black goat breed was confirmed to be clearly separated from bore breed. These results were scientific evidence that Korean native black goat represents a unique and valuable animal genetic resource.

Genetic Diversity of Wild Quail in China Ascertained with Microsatellite DNA Markers

  • Chang, G.B.;Chang, H.;Liu, X.P.;Zhao, W.M.;Ji, D.J.;Mao, Y.J.;Song, G.M.;Shi, X.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1783-1790
    • /
    • 2007
  • The genetic diversity of domestic quail and two wild quail species, Japanese (Coturnix coturnix)and Common quail (Coturnix japonica), found in China was studied using microsatellite DNA markers. According to a comparison of the corresponding genetic indices in the three quail populations, such as Polymorphism Information Content (PIC), Mean Heterozygosity ($\bar{H}$) and Fixation Index, wild Common quail possessed rich genetic diversity with 4.67 alleles per site. Its values for PIC and $\bar{H}$ were the highest, 0.5732 and 0.6621, respectively. Domestic quail had the lowest values, 0.5467 and 0.5933, respectively. Wild Japanese quail had little difference in genetic diversity from domestic quail. In addition, from analyses of the fuzzy cluster based on standard genetic distance, the similarity relationship matrix coefficient between wild Japanese quail and domestic quail was 0.937, and that between wild Common quail and domestic quail was 0.783. All of these results showed that the wild Japanese quail were closer to the domestic quail for phylogenetic relationship than wild Common quail. These results at the molecular level provide useful data about quail's genetic background and further supported the hypothesis that the domestic quail originated from the wild Japanese quail.

Genetic Variation and Divergence among Swamp Buffalo, River Buffalo and Cattle: A Microsatellite Survey on Five Populations in China

  • Zhang, Yi;Sun, Dongxiao;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.9
    • /
    • pp.1238-1243
    • /
    • 2008
  • Domestic buffalo and cattle are two extremely important livestock species in worldwide agricultural production. In this paper, to investigate genetic diversity and divergence among swamp buffalo, river buffalo and cattle, 30 microsatellite markers were screened on 168 individuals sampled from five populations. Substantial differences were observed among the three groups of animals with respect to allele frequency distribution, allele size and polymorphism. The cattle sample (Mongolian) showed significantly higher genetic variability (0.674 of gene diversity, p<0.01), and the swamp and river buffalo samples displayed similar degree of genetic variation (0.536 in swamp and 0.546 in river, p = 0.92). Results of both phylogenetic tree and multivariate analysis could distinguish three groups of animals, suggesting their deep evolutionary divergence. Additionally, using $({\delta}{\mu})^2$ genetic distance, we estimated a divergence time of 1.7 million years between swamp and river buffalo that strongly supported distinct genetic origins for the two buffalo types.