• Title/Summary/Keyword: Microsatellite Markers

Search Result 420, Processing Time 0.021 seconds

Development of Polymorphic Microsatellite Markers Suitable for Genetic Linkage Mapping of Olive Flounder Paralichthys olivaceus

  • Kim, Woo-Jin;Shin, Eun-Ha;Kong, Hee Jeong;Nam, Bo-Hye;Kim, Young-Ok;Jung, Hyungtaek;An, Cheul Min
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.303-309
    • /
    • 2013
  • Microsatellite markers are important for gene mapping and for marker-assisted selection. Sixty-five polymorphic microsatellite markers were developed with an enriched partial genomic library from olive flounder Paralichthys olivaceus an important commercial fish species in Korea. The variability of these markers was tested in 30 individuals collected from the East Sea (Korea). The number of alleles for each locus ranged from 2 to 33 (mean, 17.1). Observed and expected heterozygosity as well as polymorphism information content varied from 0.313 to 1.000 (mean, 0.788), from 0.323 to 0.977 (mean, 0.820), and from 0.277 to 0.960 (mean, 0.787), respectively. Nine loci showed significant deviation from the Hardy-Weinberg equilibrium after sequential Bonferroni correction. Analysis with MICROCHECKER suggested the presence of null alleles at five of these loci with estimated null allele frequencies of 0.126-0.285. These new microsatellite markers from genomic libraries will be useful for constructing a P. olivaceus linkage map.

DNA fingerprinting analysis of maize varieties and parental lines using microsatellite markers (Microsatellite 마커를 이용한 옥수수 품종 및 자식 계통에 대한 DNA Fingerprinting 분석)

  • Kwon, Yong-Sham
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.367-375
    • /
    • 2016
  • In the present study, we conducted genetic characterization of 90 commercial maize varieties and parental lines using microsatellite markers. Thirteen microsatellite markers were selected from 100 primer pairs in the maize genome data on the basis of polymorphism information contents (PIC) value and distinct amplification products. These markers detected 5 to 24 alleles, with an average of 13.69. The mean PIC value was 0.865 and ranged from 0.716 to 0.942. The unweighted pair-group method with arithmetical average (UPGMA) analysis was conducted for constructing the dendrogram using Jaccard's genetic similarity coefficient. The genetic similarity varied from 0.07 to 0.824. Thirteen microsatellite markers identified all 90 maize varieties and parental lines. The maize varieties were clustered into 5 major groups consistent with type and pedigree information. The microsatellite profile database of maize varieties could be used to select comparative varieties through genetic relationship analysis between existing varieties and candidate varieties in distinctness tests.

A Comparison of Two Kinds of Markers Applied in Analysis of Genetic Diversity in Sheep and Goat Populations

  • Yang, Z.P.;Chang, H.;Sun, W.;Gen, R.Q.;Mao, Y.J.;Tsunoda, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.892-896
    • /
    • 2004
  • A genetic examination using 14 structural loci and 7 microsatellite markers was carried out among random samples of Hu sheep (Hu), Tong sheep (Tong) and Yantse River Delta White goat (YRD); The mean heterozygosity (H), mean polymorphism information contents (PIC) and mean effective numbers of alleles (Ne) calculated based on the data from the above two types of genetic markers were compared. The standard genetic distances among the three populations based on two types of gene frequencies were calculated and compared. The results show that the mean heterozygosity (H), mean polymorphism information contents (PIC) and mean effective numbers of alleles (Ne) based on 7 microsatellite markers are greater than those based on the structural loci. The standard genetic distances based on structural loci among the three populations are: 0.0268-0.2487, the standard genetic distances based on microsatellite markers are: 0.2321-1.2313. The study indicates that structural and microsatellite markers reflect the genetic variation of the three populations consistently: Tong>Hu>YRD. The differentiation between related species or interpopulations can be expressed more effectively by microsatellite markers than structural markers. Oar FCB11, MAF33, Oar AE101, Oar FCB128 and OarFCB304 can be used as representative loci for research on genetic differentiation between sheep and goat.

Current trends in forest science research using microsatellite markers in Korean national journals

  • Lee, Byeong-Ju;Eo, Soo Hyung
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2016
  • Microsatellites, which are sequences of repetitive short nucleotides, are abundant in the genome and have relatively many alleles at a locus. Hence, microsatellite markers are used in various research areas such as medicine, agriculture, and biology. Thanks to recent advanced techniques and databases associated with microsatellite marker development, foreign research relying on microsatellite markers is increasing in various study areas. In this study, by analyzing microsatellites-related articles published during 2000-2014 from eight Korean national journals representing zoology, botany, genetics, ecology and environmental science, breeding science, and forest science ('Animal Cells and Systems', 'Journal of Plant Biology', 'Genes and Genomics', 'Korean Society of Environment and Ecology', 'Korean Journal of Breeding Science', 'Journal of Agricultural Science, Chungnam National University', 'Journal of Korean Forest Society' and 'Forest Science and Technology'), we found that the number of articles and diversity of study subjects and objects have increased considerably. However, there are fewer applications of microsatellites in the national forest science area. During 2000-2014 in 'Journal of Korean Forest Society', the percentage of articles dealing with microsatellite markers was found to be the lowest with 4.2% among articles focusing on PCR-based markers including RAPD, AFLP, and ISSR. However, in 'Canadian Journal of Forest Research' and 'Forest Ecology and Management', microsatellite marker articles were represented at their highest with 69.2% and 76.2%, respectively. Given the advantages of microsatellite markers, the publication of research papers using microsatellites should be increased in Korean forest science journals to the level of studies published in prominent international journals.

Genetic Characteristics of 207 Microsatellite Markers in the Korean Population and in other Asian Populations

  • Choi, Su-Jin;Song, Hye-Kyung;Jeong, Jae-Hwan;Jeon, In-Ho;Yoon, Ho-Sung;Chung, Ki Wha;Won, Yong-Jin;Choi, Je-Yong;Kim, Un-Kyung
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.301-304
    • /
    • 2008
  • Microsatellites, short tandem repeats, are useful markers for genetic analysis because of their high frequency of occurrence over the genome, high information content due to variable repeat lengths, and ease of typing. To establish a panel of microsatellite markers useful for genetic studies of the Korean population, the allele frequencies and heterozygosities of 207 microsatellite markers in 119 unrelated Korean, Indian and Pakistani individuals were compared. The average heterozygosity of the Korean population was 0.71, similar to that of the Indian and Pakistani populations. More than 80% of the markers showed heterozygosity of over 0.6 and were valuable as genetic markers for genome-wide screening for disease susceptibility loci in these populations. To identify the allelic distributions of the multilocus genetic data from these microsatellite markers, the population structures were assessed by clustering. These markers supported, with the most probability, three clustering groups corresponding to the three geographical populations. When we assumed only two hypothetical clusters (K), the Korean population was separate from the others, suggesting a relatively deep divergence of the Korean population. The present 207 microsatellite markers appear to reflect the historical and geographical origins of the different populations as well as displaying a similar degree of variation to that seen in previously published genetic data. Thus, these markers will be useful as a reference for human genetic studies on Asians.

Development of Novel Microsatellite Markers for Strain-Specific Identification of Chlorella vulgaris

  • Jo, Beom-Ho;Lee, Chang Soo;Song, Hae-Ryong;Lee, Hyung-Gwan;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1189-1195
    • /
    • 2014
  • A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.

Development of Genetic Markers for Triploid Verification of the Pacific Oyster, Crassostrea gigas

  • Kang, Jung-Ha;Lim, Hyun Jeong;Kang, Hyun-Soek;Lee, Jung-Mee;Baby, Sumy;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.916-920
    • /
    • 2013
  • The triploid Pacific oyster, which is produced by mating tetraploid and diploid oysters, is favored by the aquaculture industry because of its better flavor and firmer texture, particularly during the summer. However, tetraploid oyster production is not feasible in all oysters; the development of tetraploid oysters is ongoing in some oyster species. Thus, a method for ploidy verification is necessary for this endeavor, in addition to ploidy verification in aquaculture farms and in the natural environment. In this study, a method for ploidy verification of triploid and diploid oysters was developed using multiplex polymerase chain reaction (PCR) panels containing primers for molecular microsatellite markers. Two microsatellite multiplex PCR panels consisting of three markers each were developed using previously developed microsatellite markers that were optimized for performance. Both panels were able to verify the ploidy levels of 30 triploid oysters with 100% accuracy, illustrating the utility of microsatellite markers as a tool for verifying the ploidy of individual oysters.

Development and characterization of 21 microsatellite markers in Daphne kiusiana, an evergreen broad-leaved shrub endemic to Korea and Japan

  • Lee, Jung-Hyun;Cho, Won-Bum;Yang, Sungyu;Han, Eun-Kyeong;Lyu, Eun-Seo;Kim, Wook Jin;Moon, Byeong Cheol;Choi, Goya
    • Korean Journal of Plant Taxonomy
    • /
    • v.47 no.1
    • /
    • pp.6-10
    • /
    • 2017
  • Microsatellite markers were isolated for Daphne kiusiana var. kiusiana (Thymelaeaceae), an evergreen broad-leaved shrub endemic to Korea and Japan. Because its populations in Jeju Island are morphologically controversial, and consistently threatened by anthropogenic pressures, taxonomic delimitation and conservation effort are required at the genetic level. We developed 21 polymorphic microsatellite loci from Next Generation Sequencing data. The primer set included di-, tri-, and tetra-nucleotide repeats. Variability in the markers was tested for 80 individuals of D. kiusiana from three natural populations in Jeju Island and Japan. Among the 21 loci, three were unavailable for population JKJU of Japan. The Neighbor-Joining tree based on microsatellite markers described here classified the three populations into two groups according to geographical or morphological traits. These will be a powerful genetics tool for determining the taxonomic boundary and establishing suitable conservation strategies for D. kiusiana in Jeju Island.

Hanwoo individual identification with DNA marker information

  • Lee, Jea-Young;Choi, Yu-Mi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.599-608
    • /
    • 2007
  • This study was conducted to establish an individual identification system in Hanwoo cattle. Samples of 33 Hanwoo individuals from Korean elite sire families were used. Thirteen major microsatellite markers were selected from alleles amplified, their frequencies, H(Heterozygosity) and PIC(Polymorphism Information Content) with Hardy-Weinberg equilibrium. Next, in order to evaluate the power of the markers selected on the individual animal identification, MP(Match probability) and R(Relatedness coefficient) with the percentage of animal incorrectly identified were computed. Finally nine microsatellite markers were selected and discussed.

  • PDF

Genetic Stability Studies in Micropropagated Date Palm (Phoenix dactylifera L.) Plants using Microsatellite Marker

  • Kumar, Nitish;Singh, Amritpal S.;Modi, Arpan R.;Patel, Armi R.;Gajera, Bhavesh B.;Subhash, Narayanan
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Sixteen microsatellite markers (simple sequence repeat (SSR) markers) were employed to examine the genetic stability of 27 randomly chosen date palm (Phoenix dactylifera L.) plants produced through somatic embryogenesis with upto forty two in vitro subcultures. No microsatellite DNA variation was observed among all micropropagated plants. Our results indicate that the micropropagation protocol used for rapid in vitro multiplication is appropriate and suitable for clonal propagation of date palm and corroborated that somatic embryogenesis can also be used as one of the safe modes for production of true-to-type plants of date palm. This is the first report on the use of microsatellite DNA markers to establish the genetic stability in micropropagated date palm plants.