• Title/Summary/Keyword: Microroughness

Search Result 13, Processing Time 0.015 seconds

A Study on the Removal of Cu and Fe Impurities on Si Substrate (Si 기판에서 구리와 철 금속불순물의 제거에 대한 연구)

  • Choi, Baik-Il;Jeon, Hyeong-Tag
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.837-842
    • /
    • 1998
  • As the size of the integrated circuit is scaled down the importance of Si cleaning has been emphasized. One of the major concerns is abut the removal of metallic impurities such as Cu and Fe on Si surface. In this study, we intentionally contaminated Cu and Fe on the Si wafers and cleaned the wafer by cleaning splits of the chemical mixture of $\textrm{H}_2\textrm{O}_2$ and HF and the combination of HF treatment with UV/$\textrm{O}_3$ treatment. The contamination level was monitored by TXRF. Surface microroughness of the Si wafers was measured by AFM. The Si wafer surface was examined by SEM. AES analysis was carried out to analyze the chemical composition of Cu impurities. The amount of Cu impurities after intentional contamination was abut the level of $\textrm{10}^{14}$ atoms/$\textrm{cm}^2$. The amount of Cu was decreased down to the level of $\textrm{10}^{10}$ atoms/$\textrm{cm}^2$ by cleaning splits. The repeated treatment exhibited better Cu removal efficiency. The surface roughness caused by contamination and removal of Cu was improved by repeated treatment of the cleaning splits. Cu were adsorbed on Si surface not in a thin film type but in a particle type and its diameter was abut 100-400${\AA}$ and its height was 30-100${\AA}$. Cu was contaminated on Si surface by chemical adsorption. In the case of Fe the contamination level was $\textrm{10}^{13}$ atoms/$\textrm{cm}^2$ and showed similar results of above Cu cleaning. Fe was contaminated on Si surface by physical adsorption and as a particle type.

  • PDF

Determination of the complex refractive index of $Ge_2Sb_2Te_5$ using spectroscopic ellipsometry (분광타원해석법을 이용한 $Ge_2Sb_2Te_5$ 의 복소굴절율 결정)

  • Kim, S. J.;Kim, S. Y.;Seo, H.;Park, J. W.;Chung, T. H.
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.445-449
    • /
    • 1997
  • The complex refractive indices of $Ge_2Se_2Te_5$ which show reversible phase change between the crystalline phase and an amorphous one depending upon the annealing process have been determined in the spectral range of 0.7-4.5 eV. The $Ge_2Se_2Te_5$ films were DC sputter deposited on the crystalline silicon substrate. The spectro-ellipsometry data of a thick film were analyzed following the modelling procedure where the quantum mechanical dispersion relation were used for the complex refractive indices of both the cryastalline phase $Ge_2Se_2Te_5$ and and amorphous phase $Ge_2Se_2Te_5$, respectively. On the other hand, with the surface micro-roughness layer whose effective thickness was determined from AFM analysis, the spectro-ellipsometry data were numerically inverted to yield the complex refractive index of $Ge_2Se_2Te_5$ at each wavelength. With these set of complex refractive indices, the reflectance spectra were calculated and those spectra obtained from the numerical inversion showed better agreement with the experimental reflection spectra for both the cryastalline phase and an amorphous phase. Finally, the thin $Ge_2Se_2Te_5$ film which has the optimum thickness of 26 nm as the medium for optical recording was also analyzed and the quantitative result of the film thickness and the surface microroughness has been reported.

  • PDF

Pre-treatment condition and Curing method for Fabrication of Al 7075/CFRP Laminates (Al 7075/CFRP 적층 복합재료 제조를 위한 전처리 조건과 경화방법 연구)

  • 이제헌;김영환
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.42-53
    • /
    • 2000
  • A study has been made to establish an optimum condition in the surface treatment and curing method that is important for the fabrication of Al 7075/CFRP laminates. PAA(Phosphoric Acid Anodizing) provided a good adhesive strength and FPL(Sulfuric / Sodium Dichromate Acid Etching) had a similar adhesive strength with PAA. On the other hand, the poor adhesive strength was shown on vapor degrease and CAA(Chromic Acid Anodizing). By using the atomic force microscope(AFM), it was found that the PAA oxide surface obviously had a greater degree of microroughness as compared to vapor degrease, CAA and FPL treated surfaces. These results support the concept of a mechanical interlocking of the adhesive with-in the oxide pores as the predominant adhesion mechanism. In curing methods, the adhesive strength of co-curing method was higher than that of secondary curing method. With respect to stability of specimen shape, the secondary curing method was better than co-curing method. DMA(Dynamic Mechanical Analysis) test revealed $T_g$ in curing times over 60 min is nearly same, so it is estimated they will have similar degree of curing and joint durability in using FM300M adhesive film.

  • PDF