• Title/Summary/Keyword: Micropyramid

Search Result 2, Processing Time 0.019 seconds

Optical simulation of micro-pyramid arrays for the applications in the field of backlight unit of LCD

  • Lee, Ji-Young;Kim, Young-Jin;Nahm, Kie-Bong;Ko, Jae-Hyeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1343-1346
    • /
    • 2006
  • Optical performances of micro-pyramid arrays were simulated by ray tracing technique for the application of backlight unit of LCD. The angular distribution of the luminance and the on-axis luminance gain depended on the apex angle, the refractive index, and the density of micro-pyramids. The on-axis luminance reached a maximum when the apex angle was $90^{\circ}$. It also increased as the density and the refractive index of micro-pyramids increased. The present result showed that highly-efficient optical sheet might become realized by adopting micropyramid array and corresponding development of manufacturing processes.

  • PDF

Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process

  • Parida, Bhaskar;Choi, Jaeho;Palei, Srikanta;Kim, Keunjoo;Kwak, Seung Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.212-220
    • /
    • 2015
  • We investigated nanotextured Si solar cells using the silver-assisted chemical etching process. The nanotexturing process is very sensitive to the concentration of chemical etching solution. The high concentration process results in a nanowire formation for the nanosurfaces and causes severe surface damage to the top region of the micropyramids. These nanowires show excellent light absorption in photoreflectance spectra and radiative light emission in photoluminescence spectra. However, the low concentration process forms a nano-roughened surface and provides high minority carrier lifetimes. The nano-roughened surfaces of the samples show the improved electrical cell properties of quantum efficiency, conversion efficiency, and cell fill factor due to the reduction in the formation of the over-doped dead layer.