• 제목/요약/키워드: Micropositioning Stage

검색결과 5건 처리시간 0.025초

$H_{\infty}$ norm을 이용한 6 자유도 정밀스테이지의 모델기반 제어기 설계 (Design of a Model-based Controller for a 6-DOF Precision Positioning Stage using $H_{\infty}$ norm)

  • 문준희;이봉구
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.59-66
    • /
    • 2010
  • We developed a model-based controller for 6-DOF micropositioning of a precision stage using $H_{\infty}$ norm, For the design, a state-space system of the mathematical model of the stage is derived In developing the controller, weighting functions are effectively designed in consideration of upper bounds of the sensitivity of the control loop and control input. Step responses in open and closed loop control are provided to verify the micropositioning performance of the stage. By applying the developed controller we prove that the inverse of the weighting function forms the upper bound of the control loop. It is also found that the controller makes the same sensitivity shape with all the DOFs due to the use of $H_{\infty}$ norm. The developed controller is expected to be applied successfully for industrial use.

마이크로포지셔닝 병렬평행기구의 개발 및 실험 (Development and Experiment of a Micropositioning Parallel Manipulator)

  • 차영엽;윤권하
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.543-547
    • /
    • 2009
  • This paper describes the design, simulation, development, and experiment of a six degree-of-freedom micropositioning parallel manipulator. A movable stage was supported with six links, each of which extends with a dc-servo micropositioning actuator. In case of parallel manipulator, while the solution of the inverse kinematics is easily found by the vectors of the links which are composed of the joint coordinates in base and platform, but forward kinematic is not easily solved because of the nonlinearity and complexity of the parallel manipulator's kinematic output equation with the multi-solutions. The movable range of the prototype was ${\pm}25mm$ in the x- and y-directions and ${\pm}12.5mm$ in the z-direction. The minimum incremental motion of the prototype was $1{\mu}m$ in the x- and y-directions and $0.5{\mu}m$ in the z-direction. The repeatability of the prototype was ${\pm}2{\mu}m$ in the x- and y-directions and ${\pm}1{\mu}m$ in the z-direction. The motion performance was also evaluated by not only the computer simulation of CAD model but also the experiment using a capacitive sensor system.

3D 프린터를 사용한 정밀 스테이지의 제작 (Fabrication of Piezo-Driven Micropositioning Stage using 3D printer)

  • 정호제;김정현
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.277-283
    • /
    • 2014
  • This paper presents the design, optimization and fabrication of a piezo driven micro-positioning stage constructed using a 3D-printer. 3D printing technology provides many advantageous aspects in comparison to traditional manufacturing techniques allowing more rapid prototyping freedom in design, etc. Micro-positioning stages have traditionally been made using metal materials namely aluminum. This paper investigates the possibility of fabricating stages using ABS material with a 3D printer. CAE simulations show that equivalent motion amplification can be achieved compared to a traditional aluminum fabricated stage while the maximum stress is 30 times less. This leads to the possibility of stages with higher magnification factors and less load on the driving piezo element. Experiment results agree with the simulation results. A micro-position stage was fabricated using a 3D printer with ABS material. The motion amplification is very linear and 50 nm stepping was demonstrated.

자기 베어링으로 지지 되는 직선운동 테이블의 초정밀 위치제어에 관한 연구 (Micropositioning of a Linear Motion Table with Magnetic Bearing Suspension)

  • 김의석;안형준;장인배;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.466-469
    • /
    • 1995
  • This paper presents a design and performance of the 6 D.O.F linear motion table with a magnetic bearing suspension. The linear positioning of the table with a 150mm stroke is driven by a brushless DC Linear motor and the other attitudes of the stage are controlled by the analog PD controller with magnetic bearing actuators. Each magnetic bearing unit which consists of 3 electromagnets, 3 capacitance probes and 3 backup bearings affords controlled forces by detecting the air gap between the probes and guideways. An integral type capacitance probe amplifier is equipped on the upper plate of the table so that the probe line to the probe amplifier can be shorter therefore the problems due to the stray capacitance and noise can be reduced. Form the pitch-yaw errormeasured by the autocollimator, the vertical and horizont straightness errors of the table are derived that they are maintained below 1.mu. m over 100mm stroke. The positioning accuracy of the linear motion is maintained below 2 .mu. m and the repeatability error is below 1 .mu. m

  • PDF

6자유도 정밀 스테이지의 추종제어를 위한 슬라이딩 모드 제어기 설계 (Design of a Robust Position Tracking Controller with Sliding Mode for a 6-DOF Micropositioning Stage)

  • 문준희;이봉구
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.121-128
    • /
    • 2011
  • As high precision industries such as semiconductor, TFT-LCD manufacturing and MEMS continue to grow, the demand for higher DOF precision stages has been increasing. In general, the stages should accommodate a prescribed range of payloads in order to position various precision manufacturing/inspection instruments. Therefore a nonlinear controller using sliding motion is developed, which bears mass perturbation and makes the upper plate of the stage move in 6 DOF. For the application of the nonlinear control, an observer is also developed based on expected noise covariance. To eliminate the steady state error of step response, integral terms are inserted into the state-space model. The linear term of the controller is designed using optimization scheme in which parameters can be weighted according to their physical significance, whereas the nonlinear term of the controller is designed using trial and error method. A comprehensive simulation study proves that the designed controller is robust against mass perturbation and completely eliminates steady state errors.