• Title/Summary/Keyword: Micropore

Search Result 201, Processing Time 0.03 seconds

Characteristics of Carbon Dioxide Adsorption with the Physical Property of Activated Carbon (활성탄의 물리적 특성에 따른 이산화탄소 흡착 특성)

  • Tanveer, Ahmad;Park, Jeongmin;Choi, Sinang;Lee, Sang-Sup
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2018
  • Effect of physical property of activated carbon on its carbon dioxide adsorption was investigated for the effective control of carbon dioxide. Pinewood sawdust and coal were used as raw materials of activated carbon. Specific surface area, micropore volume and mesopore volume of the prepared activated carbons were determined, respectively. The prepared activated carbons were analyzed for their adsorption capacity of carbon dioxide. The adsorption capacity was then presented with respect to the surface area, micropore volume and mesopore volume, respectively. As a result, the specific surface area and micropore volume of both pinewood and coal activated carbon were highly related to its carbon dioxide capacity. Its mesopore volume hardly affected its carbon dioxide capacity. Preparation of activated carbon with high specific surface area and micropore volume was found to be critical to the effective control of carbon dioxide.

Development of the Experimental Apparatus to Measure a Pore Size of Micro-pore Fabrics Used for a Bedding to Block the House Dust Mite Allergen (집먼지 진드기 알레르겐 차단 침구에 사용되는 극세 공극 직물의 공극 측정을 위한 입자 투과 실험 장치의 개발)

  • Kim, Donhue
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.557-563
    • /
    • 2022
  • In order to measure the allergen penetration of micropore fabrics, it is necessary to develop a convenient and appropriate experimental method for measuring a pore size of micropore fabrics. In this study, a simple and economical experimental apparatus was developed for the analysis of the pore size of micropore fabrics by measuring the weight reduction rate. In addition, the allergen blocking properties was evaluated by measuring the pore sizes of various fabrics. According to this study, the size of the pores of the microporous fabric could be obtained by measuring the weight reduction rates. In addition, higher weight reduction rate was obtained as the suction pressure passing through the particle permeation device decreased and the suction time was increased. It is expected that the developed experimental method and apparatus can be utilized as an experimental standard for quality control methods to verify the effectiveness of micropore fabrics used for house dust mite blocking bedding.

Removal of Odor- containing Sulfur Compound, Methyl Mercaptan using Modified Activated Carbon with Various Acidic Chemicals (산으로 개질된 활성탄을 이용한 메틸 메르캅탄 악취물질 제거)

  • Kim Dae Jung;Seo Seong Gyu;Kim Sang Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Removal of methyl mercaptan was investigated using adsorption on virgin activated carbon (VAC) and modified activated carbons with acidic chemicals in the present work. CAC, NAC, AAC and SAC were represented as activated carbons modified with HCI, HNO$_{3}$, CH$_{3}$COOH and H$_{2}$S0$_{4}$ ,respectively The pore structures were evaluated using nitrogen isotherm. The surface properties of virgin activated carbon and modified activated carbons were characterized by EA, pH of carbon surface and acid value from Boehm titration. The modification of activated carbon with acidic chemicals resulted in a decrease in BET surface area, micropore volume and surface pH, but an increase in acid value. The order of the adsorption capacity of activated carbons was NAC>AAC>SAC>CAC>VAC, and in agreement with that of acid value of activated carbons, whereas in disagreement with that of micropore volume of activated carbons. It appeared that chemical adsorption played an important role in methyl mercaptan on modified activated carbons with acidic chemicals compared to virgin activated carbon. Modifying activated carbon with acidic chemicals enabled to significantly enhance removal of methyl mercaptan.

Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties

  • Haque, Enamul;Khan, Nazmul Abedin;Talapaneni, Siddulu Naidu;Vinu, Ajayan;JeGal, Jong-Geon;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1638-1642
    • /
    • 2010
  • Mesoporous carbon CMK-3s with different textural properties have been used for the adsorption of phenol to understand the necessary physicochemical properties of carbon for the efficient removal of phenol from contaminated water. The kinetic constants (both pseudo-second order and pseudo-first-order kinetics) increase with increasing pore size of carbons. The maximum adsorption capacities correlate well with micropore volume compared with surface area or total pore volume even though large pore (meso or macropore) may contribute partly to the adsorption. The pore occupancies also explain the importance of micropore for the phenol adsorption. For efficient removal of phenol, carbon adsorbents should have large micropore volume and wide pore size for high uptake and rapid adsorption, respectively.

Morphology Change of Nanotube and Micropore on the Ti-25Nb-xHf Alloys with Hf Contents after Anodization

  • Kim, Sung-Hwan;Ko, Yeong-Mo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.333-333
    • /
    • 2012
  • In this study, we investigated morphology of nanotube and micropore on the Ti-25Nb-xHf alloys with Hf contents after anodization. Ti-25Nb-xHf ternary alloys contained from (0~15) wt.% Hf contents were manufactured by vacuum arc-melting furnace. The obtained ingots were homogenized in an argon atmosphere at $1000^{\circ}C$ for 12h and then water quenching. The specimens were cut from ingots to 3mm thickness and first ground and polished using SiC paper (grades from 100 to 2000). 2steps anodization treatments on Ti-25Nb-xHf alloys were carried out at room temperature for experiments. Micro-pore formation was performed in Ca+P mixed solution at 265V for 3min. After that, nanotube formation was in 1M $H_3PO_4$ electrolytes containing 0.8wt.% NaF solutionat 10V for 120min. Morphologies of micropore and nanotube depended on the Hf content in Ti-25Nb-xZr ternary system.

  • PDF

ALC 의 내구성 및 물성개선에 관한 연구

  • 이범재;홍성수;황의환;조헌영;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.65-70
    • /
    • 1993
  • The effect of particle size of Al powder, water repellent agent and finishing agent on frost resistance, absorption ratio and structure of micropore was examined to improve the physical properties and durability of ALC. According as the amount added of water repellent agent was increased, frost resistance was improved and absorption ratio was decreased. From one side freezing /thaw test, finishing agent which has a low vapor permeation located the crack at close indoor point of ALC specimen. ALC produced from fine Al powder has a low volume reduction by scalling and a sound appearance after freezing/thawing test and top surface freezing test, The crystal of tobermorite in ALC matrix was converted to calcium carbonate by carbonation which was accelerated with the decreasing of water content. Since the micropore of ALC was filled up by calcium carbonate, void ratio was reduced and crack was detected after complete carbonation.

  • PDF

Low Temperature Adsorption of Hydrogen on Nanoporous Materials

  • Jhung, Sung-Hwa;Yoon, Ji-Woong;Kim, Hye-Kyung;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1075-1078
    • /
    • 2005
  • Hydrogen adsorption on various porous materials have been studied with a volumetric method at low temperature in the pressure of 0-760 torr. Their hydrogen uptakes depend at least partly on microporosity rather than total porosity. However, it is also necessary to consider other parameters such as pore size and pore architecture to explain the adsorption capacity. The heat of adsorption and adsorption-desorption-readsorption experiments show that the hydrogen adsorption over the porous materials are composed of physisorption with negligible contribution of chemisorption. Among the porous materials studied in this work, SAPO-34 has the highest adsorption capacity of 160 mL/g at 77 K and 1 atm probably due to high micropore surface area, micropore volume and narrow pore diameter.

Effect of pore size distribution in micro porous layer using pore forming agents under various dying conditions on PEMFC performance (건조조건 변화에 따른 미세기공층 내의 기공분포 변화가 고분자 전해질 연료전지 성능에 미치는 영향)

  • Chun, Jeong Hwan;Jo, Dong Hyun;Park, Ki Tae;Kim, Sung Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.71.1-71.1
    • /
    • 2010
  • 고분자 전해질 연료전지(PEMFC) 내의 기체확산층(GDL)은 셀 내의 물 관리에 중요한 역할을 수행한다. 일반적으로 다공성 기제(GDBL) 위에 미세기공층(MPL)을 코팅한 2층 구조의 기체확산층이 사용되는데, 이 미세기공층은 카본파우더와 테프론의 혼합물로 이루어져 있으며 촉매층에서 발생한 물을 셀 밖으로 빠르게 배출하는 역할을 수행한다. 본 연구에서는 다양한 기공분포를 갖는 미세기공층을 제조하여 고분자 전해질 연료전지 성능에 미치는 영향을 분석하였다. 미세기공층 슬러리내에 암모늄염 계열의 기공형성제를 혼합하여 다공성 기제 위에 코팅한 후 다양한 온도조건에서 건조함에 따라 기공분포가 다른 미세기공층을 제조하였다. 이렇게 제조된 미세기공층의 물성은 수은기공도계, FE-SEM, 자체적으로 제조한 기체투과도 측정 장치를 사용하여 측정하였으며, 단위 전지 성능 측정은 두 개의 가습조건(RH100%, RH50%)에서 실시하였다. 기공분포 측정결과 건조온도가 높은 미세기공층은 건조온도가 낮은 미세기공층에 비해 직경이 1,000 - 20,000 nm 인 대공극(macropore)의 수가 많지만, 직경이 100 nm 이하의 미세공 (micropore)의 수가 적은 것을 확인하였다. 전지성능 측정 결과 고가습 조건 (RH100%)에서는 미세공 (micropore)이 발달한 미세기공층을 포함한 기체확산층을 사용한 경우 가장 우수한 성능을 보여고, 저가습 조건 (RH50%)에서는 대공극 (macropore)이 발달한 미세기공층을 포함한 기체확산층을 사용한 경우 가장 우수한 성능을 나타내었다. 이는 물배출에 유리한 미세공 (micropore)의 성질과 원료 기체의 이동에 유리한 대공극(macropore)의 성질에 의한 것으로 판단된다. 따라서 셀 운전 가습조건에 따라 최적화된 기공구조를 갖는 미세기공층을 사용함으로써 셀 운전 성능을 향상 시킬 수 있을 것으로 예상된다.

  • PDF