• Title/Summary/Keyword: Microplasma mode

Search Result 4, Processing Time 0.022 seconds

Characteristics of microplasma modes in a plasma display with an auxiliary electrode

  • Kim, Seung-Hun;Mun, Jeong-Hun;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.578-581
    • /
    • 2007
  • Microplasma modes generated in a display cell with an auxiliary electrode were investigated in accordance with various coplanar-gaps and plategaps. At plate-gaps shorter than the coplanar-gap, the mode transition voltage of the auxiliary pulse increased with an increase in the coplanar-gap. At longer plate-gaps, the mode transition voltage of the auxiliary pulse decreased with an increase in the coplanar-gap.

  • PDF

Microplasma Current Switch for OLED applications

  • Cai, Jie-Yu;Kim, Myung-Min;Moon, Cheol-Hee;Lee, Sang-Youn;Yi, Seung-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.854-857
    • /
    • 2009
  • The concept of a microplasma current switch for a device operated in a current mode like organic light-emitting diodes, which features matrix addressability and current switching, is presented as well as its architecture and operational principle. To verify the concept, we have fabricated a 100 mm ${\times}$ 100 mm microplasma current switch panel with a cell pitch of $1080{\mu}m{\times}1080{\mu}m$. Moreover, the current-voltage measurements of the unit cell are performed for three different driving voltage amplitudes. They show the characteristic of an asymmetric floating double probe diagnosing plasmas.

  • PDF

마이크로플라즈마 전류 스위치 및 응용

  • Chae, Gyeol-Yeo;Kim, Myeong-Min;Mun, Cheol-Hui;Lee, Sang-Yeon;Lee, Seung-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.433-433
    • /
    • 2010
  • A microplasma current switch (MPCS) for a device operated in a current mode like organic light-emitting diodes (OLEDs), which features matrix addressability and current switching, is presented as well as its architecture and operational principle. The MPCS utilizes the intrinsic memory and conductivity of plasmas to achieve matrix addressability and current switching. We have fabricated a $100\;mm\;{\times}\;100\;mm$ MPCS panel in which its cell pitch is $1080\;{\mu}m\;{\times}\;1080\;{\mu}m$. The matrix addressability and current switching were verified. In addition, the current-voltage (I-V) characteristic of the unit cell was measured when plasmas were ignited. In principle, the scheme of the MPCS is equivalent to that of a double Langmuir probe diagnosing plasma parameters except for their relative dimensions to a plasma volume. Accordingly, the I-V characteristic was analyzed by a double Langmuir probe theory, and the plasma density and electron temperature were estimated from the I-V curve using a collisional double Langmuir probe theory.

  • PDF

Development of a Microplasma Source under Atmospheric Pressure using an External Ballast Capacitor (방전에너지 제어용 외부 커패시터를 이용한 대기압 마이크로 플라즈마 소스 개발)

  • Ha, Chang-Seung;Lee, Je-Hyun;Son, Eui-Jeong;Park, Cha-Soo;Lee, Ho-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.31-38
    • /
    • 2013
  • A pulse driven atmospheric plasma jet controlled by external ballast capacitor is developed. Unlike the most commonly use DBD sources, the proposed device utilizes bare metal electrode. The discharge energy per pulse can precisely be determined by changing voltage and capacitance of the ballast capacitor. It is shown that the device can provide wide range of plasma, from stable glow mode to near arc state. Current-voltage waveforms, optical emission spectra and discharge images are investigated as a function of an injection energy. The OES shows that He and oxygen lines are increased as a function of the external ballast capacitor. Ozone and rotational temperature have similar tendency with a power consumption. The feeding gas is He and the applied DC voltage is from 400V to 800V when the gap distance is $500{\mu}m$.