• Title/Summary/Keyword: Microphone Signal

Search Result 249, Processing Time 0.028 seconds

A Beamforming-Based Video-Zoom Driven Audio-Zoom Algorithm for Portable Digital Imaging Devices

  • Park, Nam In;Kim, Seon Man;Kim, Hong Kook;Kim, Myeong Bo;Kim, Sang Ryong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • A video-zoom driven audio-zoom algorithm is proposed to provide audio zooming effects according to the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone array in conjunction with a soft masking process that uses the phase differences between microphones. The audio-zoom processed signal is obtained by multiplying the audio gain derived from the video-zoom level by the masked signal. The proposed algorithm is then implemented on a portable digital imaging device with a clock speed of 600 MHz after different levels of optimization, such as algorithmic level, C-code and memory optimization. As a result, the processing time of the proposed audio-zoom algorithm occupies 14.6% or less of the clock speed of the device. The performance evaluation conducted in a semi-anechoic chamber shows that the signals from the front direction can be amplified by approximately 10 dB compared to the other directions.

  • PDF

Condition Monitoring of an LCD Glass Transfer Robot Based on Wavelet Packet Transform and Artificial Neural Network for Abnormal Sound (LCD 라인의 음향 특성신호에 웨이브렛 변환과 인경신경망회로를 적용한 공정로봇의 건정성 감시 연구)

  • Kim, Eui-Youl;Lee, Sang-Kwon;Jang, Ji-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.813-822
    • /
    • 2012
  • Abnormal operating sounds radiated from a moving transfer robot in LCD (liquid crystal display) product lines have been used for the fault detection line of a robot instead of other source signals such as vibrations, acoustic emissions, and electrical signals. Its advantage as a source signal makes it possible to monitor the status of multiple faults by using only a microphone, despite a relatively low sensitivity. The wavelet packet transform for feature extraction and the artificial neural network for fault classification are employed. It can be observed that the abnormal operating sound is sufficiently useful as a source signal for the fault diagnosis of mechanical components as well as other source signals.

Unmanned Patient Monitoring System Using Frame Difference Method and Decibel Threshold (프레임 차이법과 데시벨 임계치를 이용한 무인 환자 감시 시스템)

  • Lee, Kee-Woo;Lee, Hyuk-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • In this paper, we propose an unmanned patient monitoring system design and performance of a motion capture and sound detection. Unmanned patient monitoring system can be used in the greek koma and meaning deep sleep patient to need 24 hour surveillance. To monitoring, we used laptop, CCTV camera (or PC camera), A/D converter, microphone and detection program. The detection program based on the frame difference method and sound level meter. It had several functions such as data collecting and storing. All of this system was tested in several the simulations of emergency situations. It can be expected that an unmanned patient monitoring system can be used in emergency situation and patient care.

  • PDF

Residual Echo Suppression Based on Tracking Echo-Presence Uncertainty (Tracking Echo-Presence Uncertainty 기반의 잔여 반향 억제)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.955-960
    • /
    • 2009
  • In this paper, we propose a novel approach to residual echo suppression (RES) algorithm based on tracking echo-presence uncertainty (TEPU) to improve the performance of acoustic echo suppression (AES) in the frequency domain. In the proposed method, the ratio of the microphone input and the echo-suppressed output signal power is employed as the threshold value for the decision rule to estimate the echo-presence uncertainty applied to the RES filter. The proposed RES scheme estimates the echo presence uncertainty in each frequency bin and effectively reduces residual echo signal in a simple fashion. The performance of the proposed algorithm is evaluated by the objective test and yields better results compared with the conventional schemes.

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

Audio Signal Processing and System Design for improved intelligibility in Conference Room (회의실의 명료성(STI) 향상을 위한 오디오신호 처리 및 시스템 설계)

  • Kang, Cheolyong;Lee, Seokjoo;Jo, Kwangyeon;Lee, Seonhee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.225-232
    • /
    • 2017
  • Recently, the development of digital transmission technology of audio signals and the introduction of audio network equipment using digital transmission technology have been made. As a result, audio network technology and equipment are actively applied to the design and construction of audio systems. The meeting room is a place where a large number of participants exchange opinions and communicate with each other. In addition to using an electric acoustic device such as a microphone and a speaker, it improves the intelligibility of the conference room through an example using an audio network.

Fast Spectrum Sensing with Coordinate System in Cognitive Radio Networks

  • Lee, Wilaiporn;Srisomboon, Kanabadee;Prayote, Akara
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.491-501
    • /
    • 2015
  • Spectrum sensing is an elementary function in cognitive radio designed to monitor the existence of a primary user (PU). To achieve a high rate of detection, most techniques rely on knowledge of prior spectrum patterns, with a trade-off between high computational complexity and long sensing time. On the other hand, blind techniques ignore pattern matching processes to reduce processing time, but their accuracy degrades greatly at low signal-to-noise ratios. To achieve both a high rate of detection and short sensing time, we propose fast spectrum sensing with coordinate system (FSC) - a novel technique that decomposes a spectrum with high complexity into a new coordinate system of salient features and that uses these features in its PU detection process. Not only is the space of a buffer that is used to store information about a PU reduced, but also the sensing process is fast. The performance of FSC is evaluated according to its accuracy and sensing time against six other well-known conventional techniques through a wireless microphone signal based on the IEEE 802.22 standard. FSC gives the best performance overall.

Study for Visualization of Rotating Sound Source Using Microphone Array (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Rhee, Wook;Park, Sung;Lee, Ja-Hyung;Kim, Jai-Moo;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.565-573
    • /
    • 2006
  • Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. The purpose of this research is development of beamforming technique can be applied to the rotor noise source identification. For the do-Dopplerization and reconstruction of emitted sound wave, Forward Propagation Method is applied to the time domain beamforming technique. And validation test were performed using rotating sound source constructed by bended pipe and horn driver. In the validation test using sinusoidal sound wave, sufficient performance of signal processing can be seen, and the effect of measuring duration for accuracy was compared. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies and collective pitch angle, in hover condition.

An Analysis on Audio Quality Deterioration of Acoustic OFDM (음향 OFDM의 음질 저하 원인 분석)

  • Cho, Ki-Ho;Yu, Hwan-Sik;Chang, Jun-Hyuck;Kim, Nam-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.107-111
    • /
    • 2009
  • Acoustic OFDM is used for audible frequency band acoustic communication which employs loudspeaker as transmitter and microphone as the receiver antenna. Since acoustic OFDM can transmit about 1 kbps using 1600 Hz band. acoustic OFDM signal is inserted into the audio signal like music or speech, However. audio quality deteriorates definitely during the inserting process. This paper introduces a reason for audio quality deterioration and discuss how to reduce this phenomenon.

Bearing Faults Localization of a Moving Vehicle by Using a Moving Frame Acoustic Holography (이동 프레임 음향 홀로그래피를 이용한 주행 중인 차량의 베어링 결함 위치 추정)

  • Jeon, Jong-Hoon;Park, Choon-Su;Kim, Yang-Hann;Koh, Hyo-In;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.816-827
    • /
    • 2009
  • This paper deals with a bearing faults localization technique based on holographic approach by visualizing sound radiated from the faults. The main idea stems from the phenomenon that bearing faults in a moving vehicle generate impulsive sound. To visualize fault signal from the moving vehicle, we can use the moving frame acoustic holography [Kwon, H.-S. and Kim, Y.-H., 1998, "Moving Frame Technique for Planar Acoustic Holography," J. Acoust. Soc. Am. Vol. 103, No. 4, pp. 1734${\sim}$1741]. However, it is not easy to localize faults only by applying the method. This is because the microphone array measures noise(for example, noise from other parts of the vehicle and the wind noise) as well as the fault signal while the vehicle passes by the array. To reduce the effect of noise, we propose two ideas which utilize the characteristics of fault signal. The first one is to average holograms for several frequencies to reduce the random noise. The second one is to apply the partial field decomposition algorithm [Nam, K.-U., Kim, Y.-H., 2004, "A Partial Field Decomposition Algorithm and Its Examples for Near-field Acoustic Holography," J. of Acoust. Soc. Am. Vol. 116, No. 1, pp. 172${\sim}$185] to the moving source, which can separate the fault signal and noise. Basic theory of those methods is introduced and how they can be applied to localize bearing faults is demonstrated. Experimental results via a miniature vehicle showed how well the proposed method finds out the location of source in practice.