• Title/Summary/Keyword: Microorgansims

Search Result 5, Processing Time 0.027 seconds

Biodegradation of and comparison of adaptability to dectergents (미생물에 의한 계면활성제의 분해능과 적응력의 비교)

  • 이혜주;홍순우
    • Korean Journal of Microbiology
    • /
    • v.18 no.4
    • /
    • pp.155-160
    • /
    • 1980
  • Microorgansims utilizing anionic detergent as their carbon and sulfur sources were isolated from soils and sewages. Alkyl benzene sulfonate (Hiti) and sodium dodecyl sulfonate (SDS) were the detergent compound tested. Three of these isolated microorganisms were identified as Pseudomonas spp. and the others asKlbsiella, Enterobacter and Acinetobacter. Biodegradation rate of the detergents and growth rate of Acinetobacter Strain II-8, Pseudomonas strain H-3-1 and 554 among six isolated microorganisms were investigated with colorimetric, warburg manometric, and ultraviolet absorption analyses. By performance of 4 serial successive tranfer to new culture broth for the purpose of adaptation method, ABS and SDS could be degraded to far more than 40%-60% and 70%-75%, respectively. However the employment of nonadaptation method, ABS and SDS were degraded to 30%-45% and 45%-65%, respectively. In another words, detergents degradation ability was increased to a certain extent by successive transfer to the new minimal media. We would conclude that the development of adaptation was effective in the removal of recalcitrant compounds.

  • PDF

Microorganisms Against Plasmodiophora brassicae

  • Choi, Kwang-Hoon;Yi, Yong-Sub;Lee, Sun-Hee;Kang, Kyung-Rae;Lee, Eun-Jung;Hong, Sung-Won;Young, Jung-Mo;Park, Young-Hee;Choi, Gyung-Ja;Kim, Bum-Joon;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.873-877
    • /
    • 2007
  • In order to find microorganisms showing antifungal activities against Plasmodiophora brassicae, which causes club root, Korean salt-fermented fishery products were tested. Several fermented broths of microorgansims isolated from Ammodytes personatus fishery products showed high antifungal activities. The identification of microorganisms and their in vivo antifungal activities are reported herein.

Evaluation of Manganese Ion on Controlling Harmful Microorganisms In vitro and In vivo for the Early-Weaned Pig

  • Kim, I.H.;Kang, D.H.;Kim, C.S.;Seok, H.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.8-12
    • /
    • 1998
  • Two experiments were conducted to determine the effects of $MnSO_4$ on controlling harmful microorganisms in vitro and in vivo. The in vitro experiment was conducted to examine the effects of manganese sulfate $(MnSO_4)$ on the reduction of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by growth stimulation of Pediococcus acidilactici (P. acidilactici; lactic acid bacteria). Manganese ion (0.003 %) was found to stimulate the growth of P. acidilactici in the In Vitro system. When E. coli and S. aureus were grown in a mixture with P. acidilactici, their numbers were reduced. This may be the result of a reduction of pH in the medium as a result of better growth of P. acidilactici due to stimulation by the Mn ion. The in vivo experiment was conducted to determine the effects of $MnSO_4$ in diets on controlling harmful microorganisms in fecal samples of pigs. There were no significant differences for the microbial numbers (i.e., total microorganisms, E. coli, lactic acid bacteria and S. aureus) in feces of pigs fed $MnSO_4$ compared to feces of pigs fed the control diet through 7 days. However, on day 7 of experiment, the pH of feces in pigs fed $MnSO_4$ (0.1%) decreased faster than pigs fed the control diet.

Physicochemical Properties and Biological Activities of Tenebrio molitor Fermented by Several Kinds of Micro-organisms (유용 미생물을 이용한 발효갈색거저리 추출물의 이화학적 특성 및 생리활성 효과)

  • Jang, Sung-Ho;Sim, So-Yeon;Ahn, Hee-Young;Seo, Kwon-Il;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.923-930
    • /
    • 2018
  • In this study, Tenebrio molitor (T. molitor) was fermented with Lactobacillus plantarum JBMI F3 (F3), Lactobacillus plantarum JBMI F5 (F5), Lactobacillus gasseri Ba9 (Ba9), Aspergillus kawachii KCCM 32819 (Ak), Saccharomyces cerevisiae KACC 93023 (Sc), and Bacillus subtilis KACC 91157 (Bs). After fermentation, the fermented products were extracted by water, ethanol, and methanol, and their physicochemical and biological properties were investigated. In a DPPH assay, the water extracts of the fermented products of T. molitor showed high antioxidant ability. Among the water extracts, the fermented product by Bs showed the highest DPPH radical scavenging activity. The total contents of phenolic compounds and flavonoids were highest in the fermented products by Ak and Bs, respectively. Reducing activity was detected the most high activity on ethanol extract of fermented product by Bs. The water extract of the fermented product by Bs exhibited strong enzymatic activity for fibrinogen and starch hydrolysis. Based on the observed physicochemical and biological properties, the fermented products of T. molitor by microorgansims can likely be applied as functional materials in various industries.

Gaseous TCE and PCE Degradation with or without a Nonionic Surfactant (비이온 계면활성제의 주입과 비주입 할 경우 기체 상태의 TEC와 PEC 분해)

  • Kim, Jong-O
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 1997
  • This study was conducted to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the re-moval efficiency of TCE or PCE. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE, at residence times of 1.5~7 min. The removal efficiency of gaseous TCE was 100% at a residence time of 7 min and its average inlet concentration of 85 ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4~7 min and its average concentrations of 47~84 ppm. It was found that adsorption by GAC was a minor mechanism for TCE and PCE removal in the activated carbon biofilters. Transformation yields of gaseous TCE and PCE were about 8~48 g of TCE/g of phenol and 6~25g of PCE/g of phenol, according to residence times. This values showed one or two orders of magnitude less than aqueous TCE degradation. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5~50 mg/L.

  • PDF