• Title/Summary/Keyword: Micronucleus test

Search Result 202, Processing Time 0.024 seconds

Radioprotective Effect of Panax Ginseng in Mouse Bone-marrow (생쥐에서 방사선방호제로서의 인삼효과에 관한 연구)

  • Chae, Ki-Moon;Choi, Keun-Hee;Kim, Young-Ho;Kim, Kwang-Yoon;Bom, Hee-Seung;Kim, Ji-Yeul;Lee, Chong-Bin
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Radiation protection by post-irradiation injection of the ginseng extract in mice was studied. Male ICR mice, 7 weeks old, were orally injected with ginseng extrat(100mg/kg) for 10 days, and with physiologocal saline as the control. Immediately after final injection, mice were whole body irradiated with 5.08Gy(Cs-137 ${\gamma}$-ray, central dose rate : 654Gy/h) which induced Bone marrow death. At 24h after irradiation, micronucleus test and metaphase analysis in bone-marrow were carried, blood cell were counted and the survival rate were carried for 30 days after the irradiation. Stimulated recovery by the extract was observed in thrombocyte count, but that phenomenom was not showed in the erythrocyte and leucocyte counts. The 30-day survival ratio was 5% and 65% for the control and experimental group. Frequencies of micronuclei per 1000 polychromatic erythrocytes were 79.5${\pm}$1.5 in experimental group, 185.9${\pm}$35.8 in control. And Abnormal chromosomes per 50 metaphases were 112 in experimental group and 143 in control.

  • PDF

Biological Effects of Volatile Organic Compounds from Carpet Materials as Assessed by the Tradescantia Assay (자주달개비 분석법을 이용한 카펫 방출 휘발성 유기화합물의 생물학적 영향 평가)

  • Kim, Jin-Kyu;Shin, Hae-Shick;Lee, Young-Yup;Lee, Jin-Hong
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.3
    • /
    • pp.191-196
    • /
    • 2007
  • Indoor air differs from outdoor atmosphere since it contains chemical and physical contaminants from building materials. This study deals with the biological effects of volatile organic compounds (VOCs) released from synthetic fiber carpet materials. One group of Tradescantia inflorescence was exposed to VOCs from the carpet sample in the environmental test chamber, while the other inflorescence group was exposed to a TO-14 standard gas mixture (1 ppm) for comparison. After the exposure, VOCs from the carpet were analysed by the desorber/GC/MS method, and micronuclei in the pollen mother cells of Tradescantia were scored under a microscope $({\times}400)$ to evaluate the genotocixicity induced by the exposure to VOCs. The chemical analysis confirmed that a total of 12 VOCs were released from the carpet materials, among which stylene $(71.9{\mu}g\;m^{-3})$ and toluene $(49.6{\mu}g\;m^{-3})$ were in the highest concentration. Twenty four hours of exposure to VOCs from the carpet in the environmental test chamber resulted in a micronucleus frequency as high as $7.73{\pm}0.75MCN$ per 100 tetrads, which was similar to that induced after exposure to the TO-14 standard gas mixture (1 ppm) for 4 hours. Meanwhile, two hours of exposure to the standard gas mixture did not cause a significant increase in the genotoxicity compared to the spontaneous micronucleus frequency. This result indicates that exposure for a long time to the air contaminated with VOCs from the carpet materials causes a genotoxic effect. The biological-chemical combination analyses in the study proved to be an effective tool for monitoring the indoor air contaminants.

Antioxidation and Antigenotoxic Effects of Buckwheat Sprout Extracts (메밀싹 추출물의 항산화 효과 및 유전독성억제 효과)

  • Kim, Su-Hyun;Lee, Eue-Yong;Ham, Seung-Si
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.955-959
    • /
    • 2007
  • This study was carried out to determine the antioxidative and antigenotoxic effects of buckwheat (Fagopyrum esculentum Moench) sprout using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical donating method and micronucleus test. Buckwheat sprout were extracted with 70% ethanol and then further fractionated to n-hexane, chloroform, ethyl acetate (EtOAc), butanol and water. Among the five fractions, the EtOAc fraction showed the highest electron donating activity ($RC_{50}$ 26.1 ${\mu}g/mL$). The effects of buckwheat sprout extracts on the frequencies of micronucleated polychromatic erythrocytes (MNPCEs) induced by MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) were investigated in the bone marrow. 10, 20, 40 and 80 mg/kg of each extract were administered to animals immediately after injection of MNNG and the exposure time was 36 hrs. Inhibition effects of buckwheat sprout ethanol extract were 23.4%, 40.6%, 56.3% and 73.4%, respectively. When the fraction of hexane, chloroform, ethyl acetate, butanol and water from 70% ethanol extract were treated with concentration of 80 mg/kg, the suppression rates of the MNPCE were 64.1, 67.9, 75.8, 74.2 and 63.3%, respectively.

In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure

  • Kim, Jin-Sik;Sung, Jae-Hyuck;Ji, Jun-Ho;Song, Kyung-Seuk;Lee, Ji-Hyun;Kang, Chang-Soo;Yu, Il-Je
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • Objectives: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. Methods: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of $0.7\;{\times}\;10^6$ particles/$cm^3$ (low dose), $1.4\;{\times}\;10^6$ particles/$cm^3$ (middle dose), and $2.9\;{\times}\;10^6$ particles/$cm^3$ (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. Results: There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. Conclusion: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo.

Genetic Toxicity Test of Glycidol by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Kim, Ji-H.;Kim, Ki-Y.;Kwon, Kyoung-J.;Go, Seo-Y.;Min, Kyung-N.;Lee, Woo-S.;Park, Sue-N.;Sheen, Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.240-245
    • /
    • 2006
  • The primary use for glycidol is as a stabilizer in the manufacture of vinylpolymers, however, it is also used as an intermediate in the production of pharmaceuticals, as an additives for oil and synthetic hydraulic fluids, and as a diluting agent is same epoxy resins. In this study, we have carried out in vitro genetic toxicity test of glycidol and microarray analysis of differentially expressed genes in response to glycidol. The result of Ames test showed mutations with glycidol treatment in base substitution strain TA1535 both with and without exogenous metabolic activation. Likewise, glycidol showed mutations in frame shift TA98 both with and without exogenous metabolic activation. The result of COMET assay in L5178Y cells with glycidol treatment showed DNA damage both with and without exogenous metabolic activation. Glycidol increased micronuclei in CHO cells both with and without exogenous metabolic activation. 150 Genes were selected as differentially expressed genes in response to glycidol by microarray analysis and these genes would be candidate biomarkers of genetic toxic action of glycidol.

Screening and prevention of the mutagenicity for fishes accordind to cookery and storage (어류의 가열조리 및 보존에 의해 생성되는 변이원성 물질의 정량적 해석과 제어법)

  • 홍이진;이준경;구성자
    • Korean journal of food and cookery science
    • /
    • v.16 no.6
    • /
    • pp.652-662
    • /
    • 2000
  • This study was performed to measure the mutagenicity of fish by cooking and storage. Mutagenicity of the fish extract was measured by Ames test(Salmonella typhimurium reversion assay with TA 100) in vitro and by micro-nucleus test in vivo. The fish samples screened in this study were white fish(Trichiurus, Croaker, Salted Croaker) and red fish(Saury pike, Mackerel, Yellowtail, Salmon). The number of revertants of red fish were significantly higher than that of white fish. And the mutagenicity of mackerel was higher than other red fish, so followed experiment was made by using the extract of mackerel. Mutagenicity of the samples cooked on microwave oven was the lowest, whereas there was no significant difference between the samples cooked on gas grill and the ones on electric grill. In the presence of S9 mixture, the methanol extract of mackerel showed 2∼4 times high values of mutagenicity in comparison with the extract without S9. The extract of mackerel cooked with various vegetable juices showed inhibitory effects on the mutagenicity in the order of green tea, ginger, and radish. Also, the number of revertants was increased in the stored samples. Mutagenicity of the samples stored in the refrigerator was higher than that of the freezer. In micronucleus test, the methanol extract treated with vegetable juice inhibited micro-nucleus formation in bone marrow by cyclophosphamide in the order of ginger, green tea, and radish. In TBA test, there was a tendency that TBA values were increased as the storage time increased. Also, the rancidity of sample were stored in the refrigerator was higher value than sample stored in the freezer. Samples cooked on microwave oven showed the highest value in rancidity. When the antioxidant effect of vegetable juice was measured by electron donating ability(EDA) of mackerel cooked with vegetable juice to DPPH, the samples treated with onion showed the highest value of EDA(%), and the samples treated with green tea, ginger and cabbage also showed the antioxidant effect.

  • PDF

Safety of Nano-sized Bee Pollen in both In-vitro and In-vivo Models (생체 외 및 생체 내 실험조건에서 나노화 벌 화분의 안전성 규명)

  • Pyeon, Hae-In;So, Soojeong;Bak, Jia;Lee, Seunghyun;Lee, Seungmin;Suh, Hwa-Jin;Lim, Je-Oh;Kim, Jung-Woo;Kim, Sun Youn;Lee, Se Ra;Lee, Yong Hyun;Chung, Il Kyung;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.605-614
    • /
    • 2018
  • Bee pollen has an outer wall which is resistant to both acidic and basic solutions and even the digestive enzymes in the gastrointestinal tract. Therefore, the oral bioavailability of bee pollen is only 10-15%. A previous study reported on wet-grinding technology which increased the extraction of active ingredients from bee pollen by 11 times. This study was designed to investigate the safety of wet-ground bee pollen. First, a single dose of wet-ground bee pollen was tested in both rats and beagle dogs at dosages of 5, 10, and 20 g/kg and 1.5, 3, and 6 g/kg, respectively. In rats, compound-colored stools were found in those administered 10 g/kg or more of wet-ground bee pollen. In beagle dogs, 6 g/kg of wet-ground bee pollen induced diarrhea in one male for four hours. However, no obvious clinical signs were found through the end of the experiment in rats and beagle dogs. In addition, no histological abnormality was found in all animals. The data indicates that a single dose of up to 20 g/kg of wet-ground bee pollen is safe. Next, the genetic toxicity of nano-sized bee pollen was tested. This study employed a bacterial reverse mutation test, a micronucleus assay, and a chromosomal aberration assay. In the micronucleus assay, there was no genetic toxicity up to the dosage of 2 g/kg. There was also no genetic toxicity in the bacterial reverse mutation test and chromosomal aberration assay. This data provides important information in developing nano-sized bee pollen into more advanced functional foods and herbal medicines.

Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm)

  • Han, So-Ri;Yun, Eun-Young;Kim, Ji-Young;Hwang, Jae Sam;Jeong, Eun Ju;Moon, Kyoung-Sik
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions.

Chitosan Oligosaccharide Inhibits $^{203}HgCl_2-Induced$ Genotoxicity in Mice: Micronuclei Occurrence and Chromosomal Aberration

  • Yoon Hyun Joong;Park Haeng Soon;Bom Hee-Seung;Roh Young Bok;Kim Jong Se;Kim Young Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1079-1085
    • /
    • 2005
  • The purpose of this study was to investigate the safety of chitosan oligosaccharide and the effects of chitosan oligosaccharide on mercury induced genotoxicity in mice using the micronuclei and chromosome aberration. The micronuclei test was performed by microscopic examination $(\times1,000,\;stained\;using\;a\;May-Grunwald\;solution)$ after administering 0.01, 0.1, and $1\%(10\;mg/mL)$ chitosan oligosaccharide for 7, 60, and 180 days ad libitum in mice. Total micronuclei of 1,000 polychromatic erythrocytes were recorded for each group. There was no difference between the untreated and experimental groups. The intake periods and concentrations of chitosan oligosaccharide did not affect the occurrence of micronuclei in bone marrow cells (P>0.05). The chromosomal aberration test was performed by microscopic examination $({\times}1,000,\;stained\;using\;a\;4\%\;Giemsa\;solution)$ after administering the same concentration of chitosan oligosaccharide to mice, in $F_1,\;F_2,\;F_3$ generations and parents. The frequency of chromosomal aberrations was defined as [Ydr=(D+R)/total number of counted lymphocytes]. Similar to the micronuclei test, there was no difference between the untreated and treated groups. These results showed that the intake periods and concentrations of chitosan oligosaccharide did not affect chromosomal aberrations in bone marrow cells (P>0.05). To investigate the effect of chitosan oligosaccharide on mercury-induced chromosome aberration, mice in each condition were supplied with $^{203}HgCl_2$ and chitosan oligosaccharide ad libitum. Chitosan oligosaccharide significantly inhibited $^{203}HgCl_2-induced$ chromosome aberration in mice. Based on the results of this study, it may be concluded that the chitosan oligosaccharide is a nontoxic material that could be used as a suppressor of heavy metal-induced genotoxicity.

Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes

  • Hosseinimehr, Seyed Jalal;Nobakht, Reyhaneh;Ghasemi, Arash;Pourfallah, Tayyeb Allahverdi
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.256-260
    • /
    • 2015
  • Purpose: Mefenamic acid (MEF) as a non-steroidal anti-inflammatory drug is used as a medication for relieving of pain and inflammation. Radiation-induced inflammation process is involved in DNA damage and cell death. In this study, the radioprotective effect of MEF was investigated against genotoxicity induced by ionizing radiation in human blood lymphocytes. Materials and Methods: Peripheral blood samples were collected from human volunteers and incubated with MEF at different concentrations (5, 10, 50, or $100{\mu}M$) for two hours. The whole blood was exposed to ionizing radiation at a dose 1.5 Gy. Lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis blocked binucleated lymphocyte. Results: A significant decreasing in the frequency of micronuclei was observed in human lymphocytes irradiated with MEF as compared to irradiated lymphocytes without MEF. The maximum decreasing in frequency of micronuclei was observed at $100{\mu}M$ of MEF (38% decrease), providing maximal protection against ionizing radiation. Conclusion: The radioprotective effect of MEF is probably related to anti-inflammatory property of MEF on human lymphocytes.