• Title/Summary/Keyword: Microinjection

Search Result 202, Processing Time 0.03 seconds

Amygdala Depotentiation and Fear Extinction

  • Choi, Suk-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.33-45
    • /
    • 2008
  • Auditory fear memory is thought to be maintained by fear conditioning-induced potentiation of synaptic efficacy. The conditioning-induced potentiation has been shown to be maintained, at least in part, by enhanced expression of surface AMPA receptor (AMPAR) at excitatory synapses in the lateral amygdala (LA). Depotentiation, reversal of conditioning-induced potentiation, has been proposed as a cellular mechanism for fear extinction. However, a direct link between depotentiation and extinction has not yet been tested. To address this, we applied both ex vivo and in vivo approaches to rats in which fear memory had been consolidated. We found a novel form of ex vivo depotentiation; the depotentiation reversed conditioning-induced potentiation at thalamic input synapses onto the LA (T-LA synapses) ex vivo, and it could be induced only when both NMDA and metabotropic glutamate receptors were co-activated. Extinction returned the enhanced T-LA synaptic efficacy observed in conditioned rats to baseline and occluded the depotentiation. Consistently, extinction reversed conditioning-induced enhancement of surface expression of AMPAR subunits in LA synaptosomal preparations. A GluR2-derived peptide that blocks regulated AMPAR endocytosis inhibited depotentiation, and microinjection of a cell-permeable form of the peptide into the LA attenuated extinction. Our results are consistent with the use of depotentiation to weaken potentiated synaptic inputs onto the LA during extinction, and they provide strong evidence that AMPAR removal at excitatory synapses in the LA underlies extinction. The results described here are in line with previous findings. Neural activity in the LA has been shown to decrease after extinction in the rat and human. The NMDAR dependency of the depotentiation fits nicely with a large body of evidence that fear extinction depends upon amygdala NMDARs. Similarly, blockade of metabotropic glutamate recepotrs in the LA has recently been shown to attenuate fear extinction.

  • PDF

Downstream Networking of $Zap70$ in Meiotic Cell Cycle of the Mouse Oocytes

  • Kim, Hyun-Jung;Lee, Hyun-Seo;Kim, Eun-Young;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.16 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • Previously, we found that $Zap70$ (Zeta-chain-associated protein kinase) expressed in the mouse oocytes and played significant role in completion of meiosis specifically at MI-MII (metaphase I-II) transition. Microinjection of $Zap70$ dsRNA into the cytoplasm of germinal vesicle oocyte resulted in MI arrest, and exhibited abnormalities in their spindles and chromosome configurations. The purpose of this study was to determine the mechanisms of action of $Zap70$ in oocyte maturation by evaluating downstream signal networking after $Zap70$ RNAi (RNA interference). The probe hybridization and data analysis were used by Affymetrix Gene Chip Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Total 1,152 genes were up (n=366) and down (n=786) regulated after $Zap70$ RNAi. Among those genes changed, we confirmed the expressional changes of the genes involved in the regulation of actin cytoskeleton and MAPK (mitogen-activated protein kinase) signaling pathway, since the phenotypes of $Zap70$ RNAi in oocytes were found in the changes in the chromosome separation and spindle structures. We confirmed the changes in gene expression in the actin skeletal system as well as in the MAPK signaling pathway, and concluded that these changes are main cause of the aberrant chromosome arrangement and abnormal spindles after $Zap70$ RNAi.

Functional Experessions of Endogenous Dipeptide Transporter and Exogenous Proton/Peptide Cotransporter in Xenopus Oocytes

  • Oh, Doo-Man;Amidon-Gordon-L.;Sadee-Wolfgang
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 1995
  • It is essential to clone the preptide transporter in order to obtain better understanding of its molecular structure, regulation, and substrate specificity. Characteristics of an endogenous peptide transporter in oocytes were studied along with expression of an exogenous protor/peptide cotransporter from rabbit intestine. And further efforts toward cloning the transporter were performed. The presence of an endogenous peptide transporter was detected in Xenopus laevis oocytes by measuring the uptake of $0.25/{mu}M(10{\;}{\mu}Ci/ml)[^3H]$-glycylsarcosine (Gly-Sar) at pH 5.5 with or without inhibitors. Yptake of Gly-Sae in oocytes was significantly inhibited by $25{\mu}M$ glycine nd sarcosine. This result suggests that a selective transporter is involved in the endogneous uptake of dipeptides. Collagenase treatment of oocytes used to strip oocytes from ovarian follicles did not affect the Gly-Sar uptake. Changing pH from 5.5 to 7.5 did not affect the Gly-Sae uptake significantly, suggesting no depedence of the endogenous transporter on a transmembrane proton gradient. An exogenous $H^+/pep-tide$ contransported was expressed after microinjection of polyadenylated messenger ribonucleic acid $[poly(A)^+ -mRNA]$ obtained from rabbit small intestine. The Gly-Sar uptake in mRNA-injected oocytes was 9 times thigher than that in water-injected oocyltes. Thus, frog occytes can be utilized fro expression cloning of the genes encoding intestinal $H^+$peptide contransporters. Size fractionation of mRNA was successfully obtained using this technique.

  • PDF

Interaction Between Acid-Labile Subunit and Insulin-like Growth Factor Binding Protein 3 Expressed in Xenopus Oocytes

  • Choi, Kyung-Yi;Lee, Dong-Hee
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.186-193
    • /
    • 2002
  • The acid-bible subunit (ALS) associates with the insulinlike growth factor (IGF)-I or II, and the IGF binding protein-3 (IGFBP-3) in order to form a 150-kD complex in the circulation. This complex may regulate the serum IGFs by restricting them in the vascular system and promoting their endocrine actions. Little is known about how ALS binds to IGFBP3, which connects the IGFs to ALS. Xenopus oocyte was utilized to study the function of ALS in assembling IGFs into the ternary complexes. Xenopus oocyte was shown to correctly translate in vitro transcribed mRNAs of ALS and IGFBP3. IGFBP3 and ALS mRNAs were injected in a mixture, and their products were immunoprecipitated by antisera against ALS and IGFBP3. Contrary to traditional reports that ALS interacts only with IGF-bound IGFBP3, this study shows that ALS is capable of forming a binary complex with IGFBP3 in the absence of IGF When cross-linked by disuccinimidyl suberate, the band that represents the ALS-IGFBP3 complex was evident on the PAGE. IGFBP3 movement was monitored according to the distribution between the hemispheres. Following a localized translation in the vegetal hemisphere, IGFBP3 remained in the vegetal half in the presence of ALS. However, the mutant IGFBP3 freely diffused into the animal half, despite the presence of ALS, which is different from the wild type IGFBP3. This study, therefore, suggests that ALS may play an important role in sequestering IGFBP3 polypeptides via the intermolecular aggregation. Studies using this heterologous model will lead to a better understanding of the IGFBP3 and ALS that assemble into the ternary structure and circulate the IGF system.

A Study of a Sodium Bicarbonate Cotransporter Functionally Expressed in Xenopus laevis Oocytes

  • Lee, Tae-Hwan;Kim, Sung-Beom;Park, Kyung-Pyo
    • Journal of Korean Dental Science
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • Purpose: $HCO_3{^-}$ is the most important ion to buffer the acidity of saliva. The transport of $HCO_3{^-}$ is mediated by electrogenic $Na^+/HCO_3{^-}$ cotransporter 1 (NBCe1), which expressed in various tissues including salivary glands, kidney and pancreas, etc. This experiment was performed to investigate regulatory site of NBCe1involved in the pH regulation using various mutants of NBCe1. Materials and Methods: Human parotid gland NBCe1 (hpNBCe1) and mutants by deletion of 1~285 bp and 1~1,035 bp were prepared. After microinjection of each cRNA to oocytes of Xenopus laevis, they were incubated for 2~3 days. The function of each protein was tested by electrophysiological method. Results: When oocytes were exposed to the $HCO_3{^-}$ buffered solution, 1~285 bp deleted mutant hpNBCe1 evoked a marked hyperpolarization ranging from -90 mV to -160 mV (average: -134 mV; n=12) compared to the full length of hpNBCe1. Although 1~1,035 bp deleted mutant hpNBCe1 was also expressed in the plasma membrane, but it did not show any changes of membrane potentials. Conclusion: Our deletion mutant study demonstrated that 1~285 bp of the NBCe1 is the major domain to determine $HCO_3{^-}$ transport ratio.

Effects of the Particulate Matter2.5 (PM2.5) on Lipoprotein Metabolism, Uptake and Degradation, and Embryo Toxicity

  • Kim, Jae-Yong;Lee, Eun-Young;Choi, Inho;Kim, Jihoe;Cho, Kyung-Hyun
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1096-1104
    • /
    • 2015
  • Particulate $matter_{2.5}$ ($PM_{2.5}$) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which $PM_{2.5}$ aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous $PM_{2.5}$ solution on lipoprotein metabolism. Collected $PM_{2.5}$ from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. $PM_{2.5}$ extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. $PM_{2.5}$ treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by $PM_{2.5}$ solution in a dose-dependent manner. Further, $PM_{2.5}$ solution caused cellular senescence in human dermal fibroblast cells. Microinjection of $PM_{2.5}$ solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of $PM_{2.5}$ induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.

Recolonization of Transfected Blastodermal Cells in Developing Embryos after Transferring into UV-irradiated Fertilized Hen′s Egg (UV-조사 수정란 내로 이식한 유전자 변화 배반엽 세포의 재구성)

  • Lee, K.S.;Lee, H.;Kim, K.D.;Park, S.S.;Lee, S.H.
    • Korean Journal of Poultry Science
    • /
    • v.27 no.2
    • /
    • pp.155-161
    • /
    • 2000
  • Unfortunately, there is no technique which is stable and repetitive to produce transgenic chicken, although various ways of gene transfer including PGC-and embryonic cell-mediated gene transfer, DNA microinjection, virus inoculation and sperm cells have been employed. The aims of this study were 세 develop and establish such a stable, repetitive and efficient way of gene transfer giving a faithful gene expression during development after the reconstruction of embryo in an UV-irradiated egg. A dual reporter plasmid (pJJ9), a fusion gene containing lacZ and GFP driven by a CMV promoter was used to exploit either merits of both reporting markers. lacZ with strong signal or GFP with vital marking. Electroporated embryonic blastodermal cells (EBCs) in the presence of the pJJ9 DNA faithfully showed 377 bp PCR product and lacZ or GFP expressions in the identical cells in vitro of in vivo. Furthermore, analyses of expression pattern of the foreign DNA demonstrated that microinjected EBCs cells into the UV-irradiated recipient egg should participate in normal developmental process, for example, proliferation and differentiation into various tissues. Thirty percentages of the manipulated eggs showed lacZ expression in their tissues. These results together with the specific procedures used in this study should facilitate avian transgenesis.

  • PDF

Analysis of silkworm molecular breeding potential using CRISPR/Cas9 systems for white egg 2 gene

  • Park, Jong Woo;Yu, Jeong Hee;Kim, Su-Bae;Kim, Seong-Wan;Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Jong Gil;Kim, Kee Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Genome editing by CRISPR/Cas9, a third-generation gene scissor in molecular breeding at the genome level, is attracting much attention as one of the breeding techniques of the future. In this study, genetic and phenotypic analysis was used to examine the responsiveness of the Bakokjam variety of the silkworm Bombyx mori to molecular breeding using CRISPR/Cas9 in editing the white egg 2 (w-2) gene. The nucleotide sequence of the w-2 gene was analyzed and three different guide RNAs (gRNA) were prepared. The synthesized gRNA was combined with Cas9 protein and then analyzed by T7 endonuclease I after introduction into the Bm-N silkworm cell line. To edit the silkworm gene, W1N and W2P gRNA and Cas9 complexes were microinjected into silkworm embryos. Based on the results of microinjection, the hatching rate was 16-24% and the incidence of mutation was 33-37%. The gene mutation was verified in the heterozygous F1 generation, but no phenotypic change was observed. In F2 homozygotes generated by F1 self-crosses, a mutant phenotype was observed. These results suggest that silkworm molecular breeding using the CRISPR/Cas9 system is possible and will be a very effective way to shorten the time required than the traditional breeding process.

Differential gene expression analysis of human cumulus cells

  • Demiray, Sirin Bakti;Goker, Ege Nazan Tavmergen;Tavmergen, Erol;Yilmaz, Ozlem;Calimlioglu, Nilufer;Soykam, Huseyin Okan;Oktem, Gulperi;Sezerman, Ugur
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.2
    • /
    • pp.76-86
    • /
    • 2019
  • Objective: This study was performed to explore the possibility that each oocyte and its surrounding cumulus cells might have different genetic expression patterns that could affect human reproduction. Methods: Differential gene expression analysis was performed for 10 clusters of cumulus cells obtained from 10 cumulus-oocyte complexes from 10 patients. Same procedures related to oocyte maturation, microinjection, and microarray analyses were performed for each group of cumulus cells. Two differential gene expression analyses were performed: one for the outcome of clinical pregnancy and one for the outcome of live birth. Results: Significant genes resulting from these analyses were selected and the top 20 affected pathways in each group were analyzed. Circadian entrainment is determined to be the most affected pathway for clinical pregnancy, and proteoglycans in cancer pathway is the most affected pathway for live birth. Circadian entrainment is also amongst the 12 pathways that are found to be in top 20 affected pathways for both outcomes, and has both lowest p-value and highest number of times found count. Conclusion: Although further confirmatory studies are necessary, findings of this study suggest that these pathways, especially circadian entrainment in cumulus cells, may be essential for embryo development and pregnancy.

Semen parameters on the intracytoplasmic sperm injection day: Predictive values and cutoff thresholds of success

  • Moubasher, Alaa El din-Abdel Aal;Taha, Emad Abdelrehim;Elnashar, Ehab Mohamed;Maged, Ahmed Abdel Aal Abdel;Zahran, Asmaa Mohamed;Sayed, Heba Hassan;Gaber, Hisham Diab
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Objective: This study was conducted to investigate the relationship of semen parameters in samples used for intracytoplasmic sperm injection (ICSI) with fertilization and pregnancy rates in infertile couples. Methods: In this prospective study of Infertile couples with male factor infertility that had undergone ICSI, fractions of the same semen samples obtained for microinjection (to ensure the best predictability) were evaluated to determine the semen parameters and sperm DNA fragmentation index (DFI) on the day of oocyte recovery. Results: In total, 120 couples completed the study and were subdivided into fertilized (n=87) and non-fertilized couples (n=33). The fertilized couples were further classified into pregnant (n=48) and non-pregnant (n=39) couples. Compared to non-fertilized and non-pregnant couples, fertilized and pregnant couples showed statistically significantly higher sperm viability and percentage of normal sperm morphology, as well as significantly lower sperm DFI values. A receiver operating characteristic curve analysis of data from the 120 ICSI cycles showed that sperm viability, normal sperm morphology percentages, and sperm DFI were significant prognostic indicators of fertilization at cutoff values of 40%, 7%, and 46%, respectively. A sperm DFI of 46% showed sensitivity and specificity of 95% and 90%, respectively, for predicting fertilization, and no clinical pregnancies occurred in couples with a sperm DFI above 46%. Conclusion: Semen parameters from the ICSI day sample, especially sperm viability, normal morphology, and DFI, had an impact on fertilization and pregnancy outcomes in ICSI cycles.