• 제목/요약/키워드: Microhardness Test

검색결과 188건 처리시간 0.03초

2.25Cr-1Mo 강의 열화와 기계적 성질변화에 관한 연구 (A Study on the Variation of Mechanical Properties Due to Thermal Aging in 2.25Cr-1Mo Boiler Tube Steel)

  • 정희돈
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1372-1381
    • /
    • 1996
  • As recieved boiler tuve steel was aged artificially at $650^{\circ}C$ and$690^{\circ}C$ for various time duration to simulate the material deterioration which could be occurred during the operation of fossiol power plants. And the tensile tests, the microhardness tests and the characterization of carbides formed in the aging process were performed to asses the relationship between the mechanical properties and the effect of thermal aging. Furthernore, the amout of Mo-rich carbide were investigated by ondestructive method by noticing the fact that formation of Mo-rich carbide were investigated by ondestructive melthod by noticing the fact that formation of Mo-rich carbides($Mo_6C$) which stabilizes lastly affects the mechanical properties. It was known that the microhardness results of service exposed materials were similar to the ones which are aged at $650^{\circ}C$. The room temperature measurement showed small variation in the yield points and ultimate strength in materials aged at $650^{\circ}C$. Those properties at $540^{\circ}C$ showed the abrupt decrease compared with as received material even if short aging time. And it was found that $650^{\circ}C$ $690^{\circ}C$ aging cause different effects on mechanical properties, although the temperature time parameters(LMP;Larson-Miller parameter) are same. And it was concluded that the aigng at $650^{\circ}C$ is more appropriate to simulate the service exposed condition. Finally, the relationship between high temperature tensile properties and Ip values were established, which offers a potential way of reliability tests onthe power plant components.

pH 순환 모델에서 과포화 용액의 초기 우식 법랑질에 대한 재광화 효과 (THE REMINERALIZING EFFECTS OF EARLY ENAMEL CAR10US LESION BY SUPERSATURATED BUFFER SOLUTION UNDER PH CYCLING MODEL)

  • 김소라;홍석진;노병덕;이찬영;금기연
    • Restorative Dentistry and Endodontics
    • /
    • 제26권4호
    • /
    • pp.341-349
    • /
    • 2001
  • Dental caries is the most common oral disease. There are many factors contributing to its development, but complete understanding and prevention are not fully known. However, it is possible to remineralize the early enamel curious lesion by fluoride containing remineralization solution. Recently the pH-cycling model has been used to examine the effect of fluoride solution on remineralization of artificial caries in vitro as it can closely simulate the conditions encountered in vivo within a carefully controlled environment. The aim of this study was to evaluate the remineralizing effects of supersaturated buffer solutions under pH-cycling model. The specimen with 3mm-diameter was made using mature bovine incisors which has no caries and has sound enamel surface. Early curious lesions were produced by suspending each specimens into demineralization solution at pH 5.0 for 33 hours and the specimen whose surface hardness value ranged from 25 to 45 VHN were used. The pH cycling treatment regimen consisted of 5 min soaks of three treatment solutions four times per days for 15 days and the continuous cycling of demineralization and remineralization were carried out for 15 days. Following the pH-cycling treatment regimen, the specimens' surface microhardness were measured by the Vickers hardness test (VHN) and analyzed by ANOVA and Duncan's multiple-range test. 1. The surface microhardness value of supersaturated solution, Senstime, and Gagline groups were increased after pH cycling, and that of supersaturated solution was significantly Increased compared to saline group(P<0.05). 2. The surface remineralization effect of fluoride containing solutions was accelerated by saliva under pH-cycling mode 3. The pH cycling model was considered appropriate to mimic the intra-oral pH changes when evaluating demineralization and remineralization in vitro. Under the results of above study, salivary remineralization effect can be improved by fluoride containing remineralization solution. The pH-cycling model was considered appropriate to mimic the intra-oral pH changes when evaluating demineralization and remineralization in vitro.

  • PDF

The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite

  • Ghavami-Lahiji, Mehrsima;Firouzmanesh, Melika;Bagheri, Hossein;Jafarzadeh Kashi, Tahereh S.;Razazpour, Fateme;Behroozibakhsh, Marjan
    • Restorative Dentistry and Endodontics
    • /
    • 제43권2호
    • /
    • pp.26.1-26.12
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the degree of conversion (DC) and mechanical properties of a microhybrid Filtek Z250 (3M ESPE) resin composite after aging. Method: The specimens were fabricated using circular molds to investigate Vickers microhardness (Vickers hardness number [VHN]) and DC, and were prepared according to ISO 4049 for flexural strength testing. The initial DC (%) of discs was recorded using attenuated total reflectance-Fourier transforming infrared spectroscopy. The initial VHN of the specimens was measured using a microhardness tester under a load of 300 g for 15 seconds and the flexural strength test was carried out with a universal testing machine (crosshead speed, 0.5 mm/min). The specimens were then subjected to thermocycling in $5^{\circ}C$ and $55^{\circ}C$ water baths. Properties were assessed after 1,000-10,000 cycles of thermocycling. The surfaces were evaluated using scanning electron microscopy (SEM). Data were analyzed using 1-way analysis of variance followed by the Tukey honest significant difference post hoc test. Results: Statistical analysis showed that DC tended to increase up to 4,000 cycles, with no significant changes. VHN and flexural strength values significantly decreased upon thermal cycling when compared to baseline (p < 0.05). However, there was no significant difference between initial and post-thermocycling VHN results at 1,000 cycles. SEM images after aging showed deteriorative changes in the resin composite surfaces. Conclusions: The Z250 microhybrid resin composite showed reduced surface microhardness and flexural strength and increased DC after thermocycling.

Nanocomposite Coating with TiAlN and Amorphous Carbon Phases Synthesized by Reactive Magnetron Sputtering

  • Kim, Bom Sok;Kim, Dong Jun;La, Joung Hyun;Lee, Sang Yong;Lee, Sang Yul
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.801-808
    • /
    • 2012
  • TiAlCN coatings with various C contents were synthesized by unbalanced magnetron sputtering. The characteristics, the crystalline structure, surface morphology, hardness, and friction coefficient of the coatings as a function of the C content were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), a microhardness tester, and a wear test. In addition, their corrosion behaviors in a deaerated 3.5 wt% NaCl solution at $40^{\circ}C$ were investigated by potentiodynamic polarization tests. The results indicated that the $Ti_{14.9}Al_{15.5}C_{30.7}N_{38.9}$ coating had the highest hardness, elastic modulus, and a plastic deformation resistance of 39 GPa, 359 GPa, and 0.55, respectively, and it also had the lowest friction coefficient of approximately 0.26. Comparative evaluation of the TiAlCN coatings indicated that a wide range of coating properties, especially coating hardness, could be obtained by the synthesis methods and processing variables. The microhardness of the coatings was much higher than that from previously reported coating using similar magnetron sputtering processes. It was almost as high as the microhardness measured from the TiAlCN coatings (~41 GPa) synthesized using an arc ion plating process. The potentiodynamic test showed that the corrosion resistance of the TiAlCN coatings was significantly better than the TiAlN coatings, and their corrosion current density ($i_{corr}$), corrosion potentials ($E_{corr}$) and corrosion rate decreased with an increasing C content in the coatings. The much denser microstructure of the coatings due to the increased amount of amorphous phase with increasing C contents in the coatings could result in the the improved corrosion resistance of the coatings.

세라믹 용사된 S45C강재의 기계적 특성 및 피로강도 (Mechanical Characteristics and Fatigue Strength of Ceramic-Sprayed S45C Steel)

  • 오맹종;오창배;김귀식
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.32-38
    • /
    • 1998
  • This paper is to investigate of microhardness, adhesive strength, tensile strength, and fatigue strength of ceramic sprayed steel. Rotary bending fatigue tests have been conducted at room temperature in air and 3% NaCl solution using specimens of carbon steel(S45C) with sprayed coating layers of Ni-4.5% Al(under coating) and $TiO_2$ (top coating). The microhardness has been improved at $800^{\circ}C$ heat treatment and 150mm spraying distance. Tensile strength of the sprayed steel is dependent on the substrate strength. The fatigue strength of the sprayed steel is larger than that of substrate due to blasting and constraint surface of plastic deformation effect. In low stress level, the corrosion fatigue strength of the sprayed steel were lower than that of fatigue strength in air by corrosion.

  • PDF

국산동판을 사용한 리드프레임 도금기술에 관한 연구 (Electroplating on the Lead Frames Fabricated from Domestic Copper Plate)

  • 장현구;이대승
    • 한국표면공학회지
    • /
    • 제19권3호
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF

볼 밀링법으로 제조된 브레이징 삽입금속 및 접합 특성 (Characteristics of the Powder Type Ag System Insert Metals Made by Ball Milling Method and Brazed Joints)

  • 김광수;이규도;황선효
    • Journal of Welding and Joining
    • /
    • 제20권1호
    • /
    • pp.47-54
    • /
    • 2002
  • Powder type Ag system insert metals were manufactured by ball milling process. The variables of milling process such as milling media, revolution speed and powder/ball weight ratio were constant except the milling time. The milling times were selected for 24, 48 and 72 hours. The insert metals made by milling process were evaluated by performing scanning electron microscope, x-ray and DSC(differential scanning calorimetry) analysis, and further in terms of wettability test. The selected insert metals that have the good characteristics compared to commercial insert metals were applied to make the brazed joints of the steel/steel and the steel/WC superhard particles. The characterizations of those brazed joints were also conducted by microstructural observations, shear tensile tests and microhardness measurements. The results indicated that milling time of 48 hours for making powder type insert metals was the best condition showing the small amount of oxides residue, low wetting angle and stable microstructure. The brazed joints that applied the 48 hours milled insert metal were very sound condition indicating the shear tensile value of $2.29{\times}102$ MPa and the microhardness of 138VHN. Further, the amount of the porosity was appeared to be lower than that of the commercial insert metals.

LED 광중합기의 조사 mode가 복합레진의 미세경도 및 수축응력에 미치는 영향 (INFLUENCE OF IRRADIATION MODES ON THE MICROHARDNESS AND THE POLYMERIZATION CONTRACTION OF COMPOSITE RESIN POLYMERIZED WITH LED CURING UNIT)

  • 박인호;오유향;이난영;이창섭;이상호
    • 대한소아치과학회지
    • /
    • 제32권2호
    • /
    • pp.312-320
    • /
    • 2005
  • 이 연구의 목적은 LED 광중합기(Elipar Freelight $2^{(R)}$, 3M-ESPE, USA)의 조사 mode에 따른 복합레진($Supreme^{(R)}$, Filtek $Flow^{(R)}$, 3M-ESPE, USA)의 수축응력과 미세경도를 평가하는 것이다. 수축응력을 측정하기 위해 스트레인 게이지가 사용되었다. 표본은 조사 mode와 충전방법에 따라 6개의 군으로 나누어졌다. A군 : Filtek $Flow^{(R)}$ 이장, $Supreme^{(R)}$ 충전, 10초 광중합, B군 : Filtek $Flow^{(R)}$ 이장 $Supreme^{(R)}$ 충전, 15초 광중합, C군 : Filtek $Flow^{(R)}$ 이장, $Supreme^{(R)}$ 충전, 15초 soft start 광중합, D군 : $Supreme^{(R)}$ 충전, 10초 광중합, E군 : $Supreme^{(R)}$ 충전, 15초 광중합, F군 : $Supreme^{(R)}$ 충전, 15초 soft start광중합. 스트레인 게이지를 아크릴릭 링에 부착하고 strainmeter에 연결한 후 광중합하고 10분 동안 1초 간격으로 측정하고 기록하였다. 24시간 후에 각각 표본의 미세경도를 측정하였다. 결과는 ANOVA와 Tukey test를 이용해 통계학적으로 분석하였다. 결과는 다음과 같았다. 1. Soft start curing 했을 때 수축응력이 낮았다(p<0.05). Flowable resin을 이장한 군에서는 효과가 없었다. 2. 10초간 조사한 군은 15초간 조사한 군에 비해 수축응력이 적었다(p<0.05). 3. 미세경도 측정결과 상면과 하면에서 각 군 간에 차이는 없었다(p>0.05). 하지만, 하면의 미세경도가 상면에 비해 80%에 이르지 못했다.

  • PDF

Nd:YAG 레이저빔을 이용한 SCP 강판과 STS304강판 용접시 오프셋(off-set) 위치 결정에 관한 연구 (A study of the determination of off-set position for Nd:YAC laser welding between SCP steel sheet and STS304 sheet)

  • 윤부선;김도훈;박기영;이경돈
    • 한국레이저가공학회지
    • /
    • 제7권2호
    • /
    • pp.1-10
    • /
    • 2004
  • This work was attempted to join SCP sheet and STS304 sheet by using Nd:YAC laser beam. SCP sheet has good formability and low cost, while STS304 has excellent corrosion resistance and mechanical properties in high temp. In this experiment, butt joint type was used to develop the tailored blank welding for dissimilar steel. Sheets which have different thermal properties. Computer simulation was conducted to obtain the off-set position for efficient welding by considering laser power, scanning speed, focal length and basic properties. The result showed that the optimum thermal distribution was obtained when the laser beam was irradiated at $0.05{\sim}0.1$ mm off-set toward the SCP sheet side. The experiment was conducted based on the result of computer simulation to show the same optimum conditions. Optimum conditions were 3KW in laser beam power, 6m/min in scanning speed, -0.5mm in focal position, 0.1mm off-set toward SCP. Microhardness test, tensile test, bulge test, optical microscopy, EDS, and XRD were performed to observe the microstructure around fusion zone and to evaluate the mechanical properties of optimum conditions, The weld zone had high microhardness values by the formation of the martensitic structure. Tensile test measured the strength of welded region by vertical to strain direction and the elongation of welded region by parallel to strain direction. Bulge test showed $52\%$ formability of the original materials. Bead shape, grain size, and martensitic structure were observed by the optical microscopy in the weld zone. Detailed results of EDS, XRD confirmed that the welded region was connected of martensitic structure.

  • PDF

주조 형상기억 니켈-티타늄 합금의 초탄성 (SUPERELASTICITY OF CAST SHAPE MEMORY Ni-Ti ALLOY)

  • 최동익;최목균
    • 대한심미치과학회지
    • /
    • 제3권1호
    • /
    • pp.32-43
    • /
    • 1995
  • Ni-Ti alloy has excellent corrosion resistance, biocompatibility, shape memory effect and superelasticity, so it has been used widely in biomedical fields. But it has difficulty in casting due to its high melting temperature and oxygen affinity at high temperature. Recently it has been attempted to cast Ni-Ti alloy using new casting machine and investment. The purpose of this study was to examine the superelastic behavior of cast shape memory Ni-Ti alloy and to compare the mechanical properties of the cast shape memory alloy with those of commercial alloys for removable partial denture framework. Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was cast with dental argon-arc pressure casting machine and Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy, pure titanium were cast as reference. Experimental cast Ni-Ti alloy was treated with heat($500{\pm}2^{\circ}C$) in muffle furnace for 1 hour. Transformation temperature range of cast Ni-Ti alloy was measured with differential scanning calorimetry. The superelastic behavior and mechanical properties of cat Ni-Ti alloy were observed and evaluated by three point bending test, ultimate tensile test, Vickers microhardness test and scanning electron microscope. The results were as follows : 1. Cast Ni-Ti alloy(Ni 50.25%, Ti 49.75% : atomic ratio) was found to have superelastic behavior. 2. Stiffness of cast Ni-Ti alloy was considerably lesser than that of commercial alloys for removable partial denture. 3. Permanent deformation was observed in commercial alloys for removable partial denture framework at three point bending test over proportional limit(1.5mm deflection), but was not nearly observed in cast Ni-Ti alloy. 4. On the mechanical properties of ultimate tensile strength, elongation and Vickers microhardness number, cast Ni-Ti alloy was similiar to Type IV gold alloy, Co-Cr alloy, Ni-Cr alloy and pure titanium. With these results, cast Ni-Ti alloy had superelastic behavior and low stiffness. Therefore, it is suggested that cast Ni-Ti alloy may be applicated to base metal alloy for removable partial denture framework.

  • PDF