• Title/Summary/Keyword: Microgripper

Search Result 7, Processing Time 0.024 seconds

Overview of flexure-based compliant microgrippers

  • Aia, Wenji;Xu, Qingsong
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Microgripper is an essential device in the micro-operation system. It can convert other types of energy into mechanical energy and produce clamp movement with required chucking force, which enables it a broad application prospect in the domain of tiny components' processing and assembly, biomedicine and optics, etc. The performance of a microgripper is dependent on its power supply, type of drive, mechanism structure, sensing components, and controller. This paper presents a state-of-the-art survey of recent development on flexure-based microgrippers. According to the drive type, the existing microgrippers can be mainly classified as electrostatic microgripper, electrothermal microgripper, electromagnetic microgripper, piezoelectric microgripper, and shape memory alloy microgripper. Additionally, some different mechanisms, sensors, and control methods that are used in microgripper system are reviewed. The key issue of how to choose those components in microgripper system design is also addressed.

Design and fabrication of microgripper using thermal actuator and SU-8 (열 구동 엑츄에이터와 SU-8을 이용한 마이크로 그리퍼 설계 및 제조)

  • Jung, Seoung-Ho;Park, Joon-Shik;Lee, Min-Ho;Park, Sang-Il;Lee, In-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1613-1616
    • /
    • 2007
  • A microgripper using thermal actuator and SU-8 polymer was designed and fabricated to manipulate cells and microparts. A chip size of a microgripper was 3 mm ${\times}$ 5 mm. The thermally actuated microgripper consisted of two couples of hot and cold arm actuators. The high thermal expansion coefficient, 52 $ppm/^{\circ}C$, of SU-8 compared to silicon and metals, allows the actuation of the microgripper. Thickness and width of SU-8 as an end-effector were 26 ${\mu}m$ and 80 ${\mu}m$, respectively. Initial gap between left jaw and right jaw was 120 ${\mu}m$. The ANSYS program as FEM tool was introduced to analyze the thermal distribution and displacement induced by thermal actuators. $XeF_2$ gas was used for isotropic silicon dry etching process to release SU-8 end-effector. Mechanical displacements of the fabricated microgripper were measured by optical microscopy in the range of input voltage from 0 V to 2.5 V. The maximum displacement between two jaws of a microgripper Type OG 1_1 was 22.4 ${\mu}m$ at 2.5 V.

  • PDF

Microgripper driven by E-T(Electro-Thermal) actuator (E-T(Electro-Thermal) 액츄에이터를 이용한 microgripper)

  • Park, Ho-Joon;Lee, Hyun-Ki;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3325-3327
    • /
    • 1999
  • A microgripper driven by E-T (electro-thermal) actuators has been designed and fabricated by surface micromachining. This microgripper consists of two E-T actuators. Each actuator has two arms with different widths joined at the end to form a 'U' shape. The wider 'cold' arm has a narrow flexure at the end (anchor or electrode side) for easy bending, This actuator can be fabricated with only two masks - one for the sacrificial layer and the other for the poly-Si structure layer. An E-T actuator bends its arm due to unequal thermal expansion between the 'cold' arm and the 'hot' arm, This actuator tip moves laterally in an arcing motion towards the cold arm side when the structure is unevenly heated by the applied current. Therefore each microgripper is actuated inwards and can hold a micro object. The fabricated E-T actuator was operated in the range of $2{\sim}12V$ and $1{\sim}5mA$. and maximum tip displacement was $13.6{\mu}m$. This device may become useful in many applications because an E-T actuator can be designed and fabricated easily, and obtain large displacement.

  • PDF

Position and Force Control of a Sensorized Microgripper

  • Kim, Sang-Min;Kim, Deok-Ho;Kim, Kyunghwan;Kim, Byungkyu;Chung, Chung-Choo;Jaehong Shim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.43.1-43
    • /
    • 2002
  • 1. Introduction 2. Design of the Sensorized Microgripper 3. Sensing and Control of Position and Force 4. Experiments 5. Conclusions

  • PDF

Fabrication and Sensorization of a Superelastic Alloy Microrobot Gripper using Piezoelectric Polymer Sensors (초탄성 마이크로 그리퍼의 제작 및 압전폴리머 센서를 이용한 센서화)

  • 김덕호;김병규;강현재;김상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.251-255
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fine alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

  • PDF

Design, Fabrication, and Performance Evaluation of a Sensorized Superelastic Alloy Microrobot Gripper (센서화된 초탄성 마이크로그리퍼의 설계, 제작 및 성능평가)

  • Kim, Deok-Ho;Kim, Byung-Kyu;Kang, Hyun-Jae;Kim, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1772-1777
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fme alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.