• Title/Summary/Keyword: Microgrid reliability

Search Result 28, Processing Time 0.023 seconds

DC Microgrid Operational Method for Enhanced Service Reliability Using DC Bus Signaling

  • Hwang, Pyeong-Ik;Jang, Gilsoo;Pyo, Gi-Chan;Han, Byung-Moon;Moon, Seung-Il;Ahn, Seon-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.452-464
    • /
    • 2015
  • This paper proposes a DC microgrid operational strategy and control method for improved service reliability. The objective is to supply power to as many non-critical loads as possible, while providing an uninterrupted power supply to critical loads. The DC bus signaling method, in which DC voltage is an information carrier, is employed to implement the operational strategy in a decentralized manner. During grid-connected operation, a grid-tied converter balances the power of the microgrid by controlling the DC voltage. All loads are connected to the microgrid, and operate normally. During islanded operation, distributed generators (DGs), a backup generator, or an energy storage system balances the power. However, some non-critical loads may be disconnected from the microgrid to ensure the uninterrupted power supply to critical loads. For enhanced service reliability, disconnected loads can be automatically reconnected if certain conditions are satisfied. Control rules are proposed for all devices, and detailed microgrid operational modes and transition conditions are then discussed. Additionally, methods to determine control parameter settings are proposed. PSCAD/EMTDC simulation results demonstrate the performance and effectiveness of the proposed operational strategy and control method.

Reliability Evaluation of a Microgrid Considering Its Operating Condition

  • Xu, Xufeng;Mitra, Joydeep;Wang, Tingting;Mu, Longhua
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Microgrids offer several reliability benefits, such as the improvement of load-point reliability and the opportunity for reliability-differentiated services. The primary goal of this work is to investigate the impacts of operating condition on the reliability index for microgrid system. It relies on a component failure rate model which quantifies the relationship between component failure rate and state variables. Some parameters involved are characterized by subjective uncertainty. Thus, fuzzy numbers are introduced to represent such parameters, and an optimization model based on Fuzzy Chance Constrained Programming (FCCP) is established for reliability index calculation. In addition, we present a hybrid algorithm which combines scenario enumeration and fuzzy simulation as a solution tool. The simulations in a microgrid test system show that reliability indices without considering operating condition can often prove to be optimistic. We also investigate two groups of situations, which include the different penetration levels of microsource and different confidence levels. The results support the necessity of considering operating condition for achieving accurate reliability evaluation.

The Coordination Control of DC Microgrid on the Whole Operation Range (직류형 마이크로그리드의 전운전영역을 고려한 협조제어)

  • Choi, Daehee;Zhu, Shou-Zhen;Min, Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.864-871
    • /
    • 2015
  • Recently, one of the main research on the power distribution system is the microgrid. The microgrid is a combination of power sources and loads, which is controllable and has separable connection. The main objective of microgrid is the deployment of the renewable clean energy and the enhancement of load-side reliability. The modern power sources and loads have DC I/O interfaces, which is the major advantage of DC microgrid compared to the conventional AC grid. The components in the microgrid have diverse features, so there is need of proper coordination control. For achieving economic feature, the active power of renewable energy resources is regarded as major control parameter and the whole operation modes of DC microgrid are defined, and the proper operations of each component are described. From the inherent characteristics of DC, there are two control variables: voltage and active power. Through analysis of operation modes, it is possible to determine exact control objectives and optimized voltage & power control strategy in each mode. Because of consideration of whole operation modes, regardless of the number and capacity of components, this coordination control method can be used without modification. This paper defines operation mode of DC microgrid with several DC sources and suggests economic and efficient coordinated control methods. Simulation with PSCAD proves effectiveness.

Simulation Analysis of a Renewable Energy Based Microgrid using RTDS (RTDS를 이용한 신재생에너지 기반 마이크로그리드 시뮬레이션 해석)

  • Heo, Se-Rim;Kim, Gyeong-Hun;Lee, Hyo-Guen;Hwang, Chul-Sang;Park, Min-Won;Yu, In-Keun;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2190-2195
    • /
    • 2011
  • Due to enhanced demands on quality, security and reliability of the electric power energy system, a microgrid has become a subject of special interest. In this paper, output characteristics of energy storage system (ESS) with an electric double layer capacitor (EDLC) and battery energy storage system (BESS) of a renewable energy based microgrid were analyzed under grid-connected and islanded operation modes. The microgrid which consists of photovoltaic and wind power turbine generators, diesel generator, ESS with an EDLC, BESS and loads was modeled using real time digital simulator. The results present the effective control patterns of the microgrid system.

Standardization to ensure Interoperability and Reliability of Campus Microgrid (캠퍼스 마이크로그리드의 상호운용성 및 신뢰성 확보를 위한 표준화)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.277-282
    • /
    • 2020
  • The construction of medium-and large-sized microgrid systems by unit area, which is being promoted worldwide, is being developed and expanded in the form of efficient operation of electric grids and independent operation in preparation for power emergencies. Therefore, for the development of the domestic electricity industry, it is urgent to analyze the current status and technology of relevant international standardization, and to make international standardization of domestic standard (draft) on the matters that need to be enacted and newly established. Campus microgrid implements smart grid element technologies such as Integrated Energy Management System(EMS), Distributed Power(DG), Energy Storage System(ESS), Demand Response(DR), and Electric Vehicle(EV) in a university campus. As a system that reduces energy use and improves energy use efficiency and energy independence, standardization is established to secure interoperability and reliability of such systems.

Automatic Generation Control System for Operation Mode in Microgrid (마이크로그리드의 운전모드를 고려한 자동발전제어시스템)

  • Park, Jung-Sung;Lee, Hak-Ju;Chae, Woo-Kyu;Kim, Ju-Yong;Cho, Jin-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.928-936
    • /
    • 2012
  • The microgrid concept assumes a cluster of loads and microsources operating as a single controllable system that provides a new paradigm for defining the operation of distributed generation. This system can be operated as both grid-connected mode and islanded mode. In other words, the microgrid can be operated to meet their special need; such as economics in steady state and local reliability in islanded mode due to the grid fault. This paper presents the AGC (Automatic Generation Control) method for microgrid with EMS (Energy Management System).

Microgrid operating method in realtime pricing (실시간 전기요금제에서 마이크로그리드의 운용 방법)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2165-2172
    • /
    • 2010
  • This paper presents the operation algorithm of microgrid on the Real Time Pricing(RTP) for building the smart grid. RTP is higher power price variability than flat rate and time of use. However it has an effect on peak clipping and peak load shifting due to the increased price on peak time power demand. When the RTP are applied to the microgrid system, the proposed algorithm is able to be effective and economic operation. The implemented system is operated for the economic operation in microgrid connected with the power system. On the other hand, when the microgrid is operated on isolation mode, it focus on the improvement of stability and the power supply reliability of the sensitive loads. The test system are implemented and calculated on various operation modes based on non-dispachable generator output and RTP data for validating the proposed operation algorithm. The calculated results are compared to the implemented results using real-time simulator. It can be confirmed that the proposed operation system are identical results to the calculated one. When the proposed operation algorithm is applied to the system, it can be show the effectiveness of the peak clipping and peak load shifting and the improvement of economic feasibility.

Power Hardware-in-the-Loop (PHIL) Simulation Testbed for Testing Electrical Interactions Between Power Converter and Fault Conditions of DC Microgrid (컨버터와 DC 마이크로그리드 사고 상황의 상호작용을 검증하기 위한 실시간 전력 시뮬레이션 테스트 베드)

  • Heo, Kyung-Wook;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.150-157
    • /
    • 2021
  • Nowadays, a DC microgrid that can link various distributed power sources is gaining much attention. Accordingly, research on fault situations, such as line-to-line and line-to-ground faults of the DC microgrid, has been conducted to improve grid reliability. However, the blackout of an AC system and the oscillation of a DC bus voltage have not been reported or have not been sufficiently verified by previous research. In this study, a 20 kW DC microgrid testbed using a power HIL simulation technique is proposed. This testbed can simulate various fault conditions without any additional grid facilities and dangerous experiments. It includes the blackout of the DC microgrid caused by the AC utility grid's blackout, a drastic load increment, and the DC bus voltage oscillation caused by the LCL filter of the voltage source converter. The effectiveness of the proposed testbed is verified by using Opal-RT's OP5707 real-time simulator with a 3 kW prototype three-port dual-active-bridge converter.

Simulation analysis of a renewable energy based microgrid using RTDS (RTDS를 이용한 신재생에너지 기반 마이크로그리드 시뮬레이션 해석)

  • Heo, Se-Rim;Kim, Gyeong-Hun;Lee, Hyo-Guen;Hwang, Chul-Sang;Park, Min-Won;Yu, In-Keun;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.143-144
    • /
    • 2011
  • Due to enhanced demands on quality, security and reliability of the electric power energy system, a microgrid has become a subject of special interest. In this paper, output characteristics of energy storage system (ESS) with an electric double layer capacitor (EDLC) and battery energy storage system (BESS) of a renewable energy based microgrid were analyzed under grid-connected and islanded operation modes. The microgrid which consists of photovoltaic and wind power turbine generators, diesel generator, ESS with an EDLC, BESS and loads was modeled using real time digital simulator. The results present the effective control patterns of the microgrid system.

  • PDF

Dynamic analysis of Microturbine and FuelCell in MicroGrid using EMTP-RV (마이크로터빈과 연료전지의 EMTP-RV 모델링을 통한 마이크로그리드 내 동특성 분석)

  • Seo, Gyu-Seok;Ju, Jae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.42-48
    • /
    • 2010
  • The Microsource has to supply high quality Power that has high reliability and high energy efficiency to Load according to operating type of Microgrid. The energy sources of microsource type have various dynamic characteristic and transient response corresponding to classes and application skill. This paper shows dynamic characteristic of Microgrid according to Energy Source of microsource type. This research has been carried out by detailed modelling of Microturbine system and Fuelcell system. All models are realized by EMTP/RV and simulated change of operating type and load increase within Microgrid of DC constant voltage inverter model and Microturbine, Fuelcell based Microsource.