• Title/Summary/Keyword: Microgrid design

Search Result 51, Processing Time 0.023 seconds

Design and Dynamic Performance Analysis of a Stand-alone Microgrid - A Case Study of Gasa Island, South Korea

  • Husein, Munir;Hau, Vu Ba;Chung, Il-Yop;Chae, Woo-Kyu;Lee, Hak-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1777-1788
    • /
    • 2017
  • This paper presents the design and dynamic analysis of a stand-alone microgrid with high penetration of renewable energy. The optimal sizing of various components in the microgrid is obtained considering two objectives: minimization of levelized cost of energy (LCOE) and maximization of renewable energy penetration. Integrating high renewable energy in stand-alone microgrid requires special considerations to assure stable dynamic performance, we therefore develop voltage and frequency control method by coordinating Battery Energy Storage System (BESS) and diesel generators. This approach was applied to the design and development of Gasa Island microgrid in South Korea. The microgrid consists of photovoltaic panels, wind turbines, lithium-ion batteries and diesel generators. The dynamic performance of the microgrid during different load and weather variations is verified by simulation studies. Results from the real microgrid were then presented and discussed. Our approach to the design and control of microgrid will offer some lessons in future microgrid design.

A Study on Simulation of Dynamic Characteristics in Prototype Microgrid (Prototype Microgrid의 동특성 모의에 관한 연구)

  • Choi, Eun-Sik;Choi, Heung-Kwan;Jeon, Jin-Hong;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2157-2164
    • /
    • 2010
  • Microgrid is generally defined as cluster of small distributed generators, energy storages and loads. Through monitoring and coordinated control, microgrid can provide various benefits such as reduction of energy cost, peak shaving and power quality improvement. In design stage of microgrid, system dynamic simulation is necessary for optimizing of sizing and siting of DER(distributed energy resources). As number of the system components increases, simulation time will be longer. This problem can restrict optimal design. So we used simplified modeling on energy sources and average switching model on power converters to reduce simulation time. The effectiveness of this method is verified by applying to prototype microgrid system, which is consist of photovoltaic, wind power, diesel engine generators, battery energy storage system and loads installed in laboratory. Simulation by Matlab/Simulink and measurements on prototype microgrid show that the proposed method can reduce simulation time not sacrificing dynamic characteristics.

The Economic Evaluation based Design Program for the Off-Grid Microgrid (경제성평가 기반의 독립형 마이크로그리드 설계 프로그램 개발)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Jung, Won-Wook;Kim, Ju-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.90-98
    • /
    • 2010
  • Microgrid is a small-scale power system composed of distributed generators, energy storage system and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents optimal design procedures for remote microgrid. The design program is based on the economic evaluations including the feasibility study module, optimal combination and allocation of DERs, power network design and the reduction of the GHG emmission. This program which is suggested in this paper shows good performance as a tool of remote microgrid design.

The economic based Program for Remote Microgrid Design (경제성평가에 의한 독립형 마이크로그리드의 설계프로그램 개발)

  • Lee, Hak-Ju;Jung, Won-Wook;Chu, Ceol-Min
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.219-222
    • /
    • 2009
  • Microgrid is a small-scale power system composed of distributed generators, energy storage system and loads, and can operate in the grid-connected mode and the islanded mode. This paper presents optimal design procedures for remote microgrid. The design program is based on the economic evaluations including the feasibility study module, optimal combination and allocation of DER, power network design and the reduction of the GHG emmission. This program which is suggested in this paper shows good performance as a tool of remote microgrid design.

  • PDF

Real-time Operation Analysis for Stand-alone Microgrid using RTDS (RTDS를 이용한 독립형 마이크로그리드의 실시간 동작 분석)

  • Lee, Yoon-Seok;Han, Byung-Moon;Won, Dong-Jun;Lee, Hak Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1393-1401
    • /
    • 2014
  • In this paper the operational characteristics of stand-alone microgrid was analyzed using RTDS simulation models. The accuracy of developed simulation models were verified by comparing with the analysis results using the PSCAD/EMTDC simulation models. The proper scenarios and operation algorithms were developed and analyzed in accordance with various situations that can occur in the actual system, so as to establish operation scheme for the stand-alone microgrid system. The developed simulation models can be effectively utilized to design a newly installed stand-alone microgrid and to develop various operation scenarios for stand-alone microgrid. And these models can be applied for analyzing the transient phenomena due to system fault so that system protection can be properly designed.

Design and Implementation of the Script-based EMS for Flexible Management of Stand-alone Microgrid (독립형 마이크로그리드의 유연한 운영을 위한 스크립트 기반 EMS 설계 및 구현)

  • Kim, Joon-Hyoung;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1231-1240
    • /
    • 2015
  • Nowadays, in islands where electricity should be provided autonomously, stand-alone microgrid technologies using renewable energy such as sunlight generation and wind power generation come into wide use. The microgrid electricity generation using renewable energy is greatly affected by the natural environment of a site. In order to maintain stable electricity supply for fluctuating electricity generation due to natural environment, the energy management via EMS is positively necessary. In existing stand-alone microgrid EMS, system operation logic is not changeable flexibly because compiled or builded codes are released into the EMS of a site, respectively. In this paper, we designed a flexible operating script-based microgrid EMS Framework for various sites and applied it to some island sites. We could confirm its usability.

The System Design and Demonstration for Autonomous Microgrid Operation

  • Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Kim, Heung-Geun;Seo, Gyu-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • The autonomous microgrid is a system that is autonomously operated depending on the grid and internal load condition, without the operator's intervention. In this study, a control algorithm for the microsource and an operation algorithm for the microgrid are proposed to realize the autonomous microgrid system. In addition, a microgrid operation system based on the operation algorithm is proposed. The electromagnetic transient program is used by the proposed microsource control algorithm for simulation, and the validity of the algorithm is verified. The proposed operation system is verified based on a case study using a simulator and test devices.

Research on the Power Sharing Control and Stability of VSGs

  • Xie, Dong;Zang, Da-Jin;Gao, Peng;Wang, Jun-Jia
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.542-550
    • /
    • 2017
  • Aiming at the deficiencies of power sharing control performances when a traditional droop control is adopted for microgrid inverters, this paper proposes a microgrid inverter power sharing control strategy based on a virtual synchronous generator. This control method simulates the electromechanical transient characteristics of a synchronous generator in a power system by an ontology algorithm and the control laws of a synchronous generator by control over the speed governor and excitation regulator. As a result, that the microgrid system is able to effectively retain the stability of the voltage and frequency, and the power sharing precision of the microgrid inverter is improved. Based on an analysis of stability of a microgrid system controlled by a virtual synchronous generator, design thoughts are provided for further improvement of the power sharing precision of inverters. The simulation results shows that when the virtual synchronous generator based control strategy was adopted, the power sharing performances of microgrid inverters are improved more obviously than those using the droop control strategy.

Design and Test of ESS DC-DC Converter using Zinc-Bromine Redox Flow Battery for Stand-alone Microgrid (Zinc-Bromine 레독스 플로우 배터리를 이용한 독립형 마이크로그리드 ESS DC-DC 컨버터 설계 및 실증)

  • Choe, Jung-Muk;Ra, Sun-Gil;Han, Dong-Hwa;Lee, Yong-Jin;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.106-115
    • /
    • 2014
  • This paper proposes ESS DC-DC Converter using Redox Flow Battery (RFB) for stand-alone microgrid. Price, safety, expandability and dynamics are crucial in ESS. Reports show that Zinc-bromine (ZnBr) RFB is the best choice in ESS. Simple electrical ZnBr RFB model is obtained from charging test. DC-DC converter Inductor current-DClink Voltage model is proposed for the DC microgrid. For the controller design in z-domain, the K-factor method is by considering nature of the digital controller. The control performance has been verified with simulation and hardware experiments. Lastly 10kW DC microgrid using RFB test result is shown.

Analog Controller for Battery to Stabilize DC-bus Voltage of DC-AC Microgrid

  • Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.66-67
    • /
    • 2014
  • Stabilization of the DC bus voltage is an important task in DC-AC microgrid system with renewable energy source such as solar system. A battery energy storage system (BESS) has become a general solution to stabilize the DC-bus voltage in DC-AC microgrid. This paper develops the analog BESS controller which requires neither computation nor dc-bus voltage measurement, so that the system can be implemented simply and easily. Even though others methods can stabilize and control the DC-bus voltage, it has complicated structure in control and low adaptive capability. The proposed topology is simple but is able to compensate the solar source variation and stabilize the DC-bus voltage under any loads and distributed generation (DG) conditions. In addition, the design of analog controller is presented to obtain a robust system. In order to verify the effectiveness of the proposed control strategy, simulation is carried out by using PSIM software.

  • PDF