• Title/Summary/Keyword: Microgrid System

Search Result 253, Processing Time 0.023 seconds

Supervisory Protection System of Microgird Interconnected to Low Voltage Grids (저압계통 연계형 마이크로그리드의 보호감시 시스템)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.36-42
    • /
    • 2011
  • This paper mainly proposes the protective coordination scheme of the microgrid system. The microgrid protection is identical to the conventional protection system separating the normal part and contingency part to reduce damage when the contingency occur at power cables, facilities. But they are different in the protection type. The conventional protection system only considers unidirectional current. However the microgrid protection should be considered not only unidirectional current but also backfeed current because various microsources and loads are installed in the microgrid system. In case the contingency occurs in microsource, when microgrid is interconnected to grid, the protection system should be configured to not separate microgrid from grid before the microsource is isolated to microgrid. And in case of fault occur in power system, the microsources should not isolated to microgrid before the static switch at PCC is tripped to separate from power system. Considering these characteristic of microgird, this paper proposes the protective coordination scheme of microgrid and implemented the on-line real time monitoring system. Especially in case the microgrid is connected to low voltage distribution system with 220/380V voltage level, the proposed protection method with power IT technology can solve the problems when the existing protective devices only applied to the microgrid system.

A Study on Simulation of Dynamic Characteristics in Prototype Microgrid (Prototype Microgrid의 동특성 모의에 관한 연구)

  • Choi, Eun-Sik;Choi, Heung-Kwan;Jeon, Jin-Hong;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2157-2164
    • /
    • 2010
  • Microgrid is generally defined as cluster of small distributed generators, energy storages and loads. Through monitoring and coordinated control, microgrid can provide various benefits such as reduction of energy cost, peak shaving and power quality improvement. In design stage of microgrid, system dynamic simulation is necessary for optimizing of sizing and siting of DER(distributed energy resources). As number of the system components increases, simulation time will be longer. This problem can restrict optimal design. So we used simplified modeling on energy sources and average switching model on power converters to reduce simulation time. The effectiveness of this method is verified by applying to prototype microgrid system, which is consist of photovoltaic, wind power, diesel engine generators, battery energy storage system and loads installed in laboratory. Simulation by Matlab/Simulink and measurements on prototype microgrid show that the proposed method can reduce simulation time not sacrificing dynamic characteristics.

A Novel Frequency Tracker for Islanded-Mode Operation in Microgrid (마이크로그리드 독립운전모드를 위한 주파수 추종에 관한 연구)

  • Jeon, Jin-Hong;Kim, Kyoung-Hoon;Hwang, Chul-Sang;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1331-1338
    • /
    • 2011
  • This paper proposes a method for frequency control of islanded microgrid with battery energy storage system. For frequency control of islanded microgrid, battery energy storage system uses a phase locked loop algorithm with positive sequence components for a fast frequency estimation. Microgrid is a power system with small inertia because it has small capacity generators and inverter systems for renewable energy. So, Islanded microgrid's frequency varies fast and large as small generation and load changes. To reduce frequency variation of islanded microgrid, it needs a device with fast frequency response. For fast frequency response, a fast frequency tracking is important. To show the validation of proposed fast frequency tracking algorithm, battery energy storage system with proposed algorithm is tested in microgrid pilot plant.

A New Modified CNP for Autonomous Microgrid Operation Based on Multiagent System

  • Kim, Hak-Man;Wei, Wenpeng;Kinoshita, Tetsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.139-146
    • /
    • 2011
  • This paper presents a new modified Contract Net Protocol (CNP) for microgrid operation based on multiagent system. The CNP is a widely used protocol for interactions among distributed problem solving. The Contract Net Interaction Protocol of the Foundation for Intelligent Physical Agents (FIPA-CNIP) is a minor modification of the original CNP for multiagent system applications. In this paper, a modified CNP (MCNP) based on the FIPA-CNIP is proposed for more specialized interactions among agents for microgrid operation. A multiagent system is designed and constructed for microgrid operation. A microgrid operation based on the multiagent system is tested to check the functionality of the proposed MCNP.

A Multiagent System for Microgrid Operation in the Grid-interconnected Mode

  • Kim, Hak-Man;Kinoshita, Tetsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.246-254
    • /
    • 2010
  • This paper presents a multiagent system for microgrid operation in the grid-interconnected mode. An energy market environment with generation competition is adopted for microgrid operation in order to guarantee autonomous participation and meet the requirements of participants in the microgrid. The modified Contract Net Protocol (CNP) is used as a protocol for interactions among agents. The multiagent system for microgrid operation based on the modified CNP and the energy market environment is designed and implemented. To verify the feasibility of the suggested multiagent system, experiments on three operation conditions are carried out.

Supervisory Control for Energy Management of Islanded Hybrid AC/DC Microgrid

  • Mansour, Henda Ben;Chaarabi, Lotfi;Jelassi, Khaled;Guerrero, Josep M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • This paper presents the modeling for islanded hybrid AC/DC microgrid and the verification of the proposed supervisory controller for energy management for this microgrid. The supervisory controller allows the microgrid system to operate in different power flows through the proposed control algorithm, it has several roles in the management of the energy flow between the different components of the microgrid for reliable operation. The proposed microgrid has both essential objectives such as the maximum use of renewable energies resources and the reduction of multiple conversion processes in an individual AC or DC microgrids. The microgrid system considered for this study has a solar photovoltaic (PV), a wind turbine (WT), a battery (BT), and a AC/DC loads. A small islanded hybrid AC/DC microgrid has been modeled and simulated using the MATLAB-Simulink. The simulation results show that the system can maintain stable operation under the proposed supervisory controller when the microgrid is switched from one operating mode of energy flow to another.

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

Functional Properties of Stand-alone Microgrid EMS Application (에너지 자립섬 EMS 어플리케이션의 기능적 특성)

  • Lee, Ha-Lim;Chun, Yeong-Han;Chae, Wookyu;Park, Jungsung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.115-119
    • /
    • 2016
  • For many past years, research in the operation of stand-alone Microgrid, which provides electric power generated from renewable energy sources and energy storage system instead of diesel generators, has been a major issue in order to prepare the exhaustion of fossil fuel and to protect environment, in island grids. Samso Island, known as the world's first stand-alone Microgrid in Denmark, is connected to the mainland grid through AC system, which has different technical conditions with Korea's isolated power system. Korea's first stand-alone Microgrid has been built in Ga-sa island, Chun-la-nam-do, based on Energy Management System (EMS) operation, and other islands are under construction to follow the next step. These stand-alone Microgrid's has large capacity of Battery Energy Storage System (BESS) and the proportion of the renewable energy sources are large, which makes it necessary to use a Microgrid-Energy Management System (MG-EMS) to operate the grid effectively and economically. However, since the main subject of MG-EMS is different from EMS, specific characteristics and functions must be different as well. In this paper, the necessary characteristics and functions are explained for a general MG-EMS compared to a large power system EMS.

Software Functional Requirements and Architectures of Microgrid Energy Management System

  • Sohn, Jin-Man;Yun, Sang-Yun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.269-272
    • /
    • 2016
  • Distribution management system or microgrid energy management system plays an important role in monitoring, operation and control of electrical distribution systems by utilizing IT infrastructure. Nowadays, the rapid increase of the distributed resources makes the conventional management system have some additional functionality for the reliable operation due to intermittent renewables and the efficient operation on the economical purpose. In this paper, the brief standard software functional requirements of microgrid energy management system are provided through survey of the recent commercial products of the major vendors, and furthermore the architectures of microgrid energy management system are provided in comparison with major suppliers' microgrid energy management system. The summary of investigation will be able to make the developers and researchers focus on the specific functionality in the real world.

Power Balancing Strategy in the Microgrid During Transient (마이크로그리드 과도상태 시 전력 수급 균형 전략)

  • Seo, Jae-Jin;Lee, Hak-Ju;Jung, Won-Wook;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.707-714
    • /
    • 2010
  • When problems such as line fault, breakdown of a substation or a generator, etc. arise on the grid, the Microgrid is designed to be separated or isolated from the grid. Most existing DGs(Distributed Generators) in distribution system use rotating machine. However, new DGs such as micro gas turbine, fuel cell, photo voltaic, wind turbine, etc. will be interfaced with the Microgrid through an inverter. So the Microgrid may have very lower inertia than the conventional distribution system. By the way, the rate of change of frequency depends on the inertia of the power system. Moreover, frequency has a strong coupling with active power in power system. Because the frequency of the Microgrid may change rapidly and largely during transient, appropriate and fast control strategy is needed for stable operation of the Microgrid. Therefore, this paper presents a power balancing strategy in Microgrid during transient. Despite of strong power or frequency excursions, power balancing in the Microgrid can be maintained.