• Title/Summary/Keyword: Microgear

Search Result 4, Processing Time 0.016 seconds

Microstereolithography using a Digital Micromirror Device as the Dynamic Pattern Generator (디지털마이크로미러소자를 동적마스크 패턴생성기로 응용한 마이크로광조형)

  • Joo Jae-Young;Kim Sung-Hoon;Byun Hong-Seok;Lee Kwan-Heng;Jeong Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.146-151
    • /
    • 2006
  • In order to increase the productivity of conventional microstereolithography, a new method using a digital micromirror device ($DMD^{TM}$) as the dynamic patter generator is proposed. The deviation from the level of clear optical images to the level of photopolymer surface is a key for the fabrication of an accurate 3D structure, so this deviation is minimized by controlling the viscosity of FA 1260T with organic solvents. After finding the appropriate process variables, the feasibility of microstructure fabrication such as a microgear and a microsphere is demonstrated. Microstereolithography with $DMD^{TM}$ showed the potential to replace the existing focused beam microstereolithography.

Microstereolithography using a digital micromirror device as a dynamic pattern generator (디지털마이크로미러 소자를 이용한 마이크로광조형 기술개발)

  • Joo J.Y.;Kim S.H.;Jeong S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.509-513
    • /
    • 2005
  • In order to increase productivity in conventional stereolithography. Microstereolithography using a digital micramirror device $(DMD^{TM})$ as a dynamic patter generator is proposed The deviation from a level of clear optical images to a level of a photopolymer surface is a key for the fabrication of an accurate 3D structure. so this deviation is minimized by controlling the viscosity of FA1260T with organic solvents. After finding the appropriate process valuables (exposure time of optical images. layer thickness of each layer). the feasibility of microstructures such as a microgear and a microsphere is then demonstrated. Microstereolithography wi th $DMD^{TM}$ might eventually replace conventional laser induced microstereolithography market such as in the manufacturing of jewels and medical parts.

  • PDF

Fabrication of Real 3D Shape Components Using Bi-Sn Alloys (Bi-Sn 합금을 이용한 3차원 미세 구조물의 제작기술 개발)

  • Chung, Sung-Il;Park, Sun-Joon;Im, Yong-Gwan;Choi, Jae-Young;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.624-631
    • /
    • 2004
  • In this paper, new replication techniques fur a metal microcomponent having a real 3D shape were introduced. Helical gear was selected as one of a real 3D microcomponents for this study. The helical gear, which was made of photo-curable resin, was fabricated as a master pattern by microstereolithography technology. Then, a silicone rubber mold was fabricated from the master pattern. Lastly, a final bismuth alloy pattern was transferred from the silicone rubber mold by the microcasting process. In this paper, the replication technique is described in detail from the master pattern to the final pattern with some investigation on factors related to the technique.

Fabrication of Micro Component of Metallic Nano Powder Using Polymer Mold (폴리머 몰드를 이용한 금속 나노분말의 미세부품 제조)

  • Lee, Woo-Seok;Kim, Sang-Phil;Lee, Hye-Moon;Bae, Dong-Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.202-207
    • /
    • 2007
  • Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about $100^{\circ}C$. Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.