• Title/Summary/Keyword: Microfiltration Membrane

Search Result 308, Processing Time 0.029 seconds

Permeation Behavior of Microfiltration Membrane by Alumina Colloidal Suspension under a Cyclic Variation in TMP (운전압력의 순환변화에 따른 알루미나 현탁액의 정밀여과 투과거동)

  • Nam, Suk-Tae;Han, Myeong-Jin
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • This study investigated the fouling behavior of $Al_2O_3$ colloids on polyethylene microfiltration membrane. To examine the effect of operation variation on fouling, operating pressure was increased from 0.49 to 1.96 bar along with time elapses and then was reduced to 0.49 bar reversely. A hysteresis behavior was observed in the membrane permeate flux over pressure, revealing different fluxes at the same pressure according to the pressure control type, increasing and decreasing. Permeate resistance and its rate of increase was higher in the decreasing pressure cycle than in the increasing pressure cycle. At the initial period of filtration, fouling mechanism for the both cycles was governed by the cake filtration. The degree of fouling was higher in the decreasing pressure cycle compared with in the increasing pressure cycle.

Influences of Membrane Fouling on Water Permeability of Hollow Fiber Microfiltration Membrane (막오염현상이 중공사정밀여과막의 물투과특성에 미치는 영향)

  • Kim, Boo-Gil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.92-99
    • /
    • 1996
  • The effects of membrane fouling on the water permeability were examined using the hollow fiber microfiltration (HMF)membrane. A membrane module with a pore size of 0.1 micron was submerged in the permeation tank and water bath. The applied pressure was 12.4 kPa for direct solid-liquid separation of activated sludge. As the concentration of MLSS(880~2180mg/l) of the feed solution increased, the decreasing rates of the water flux increased and the membrane was clogged more rapidly. The water flux through the membrane did not increase effectively even with the increase in the applied pressure(40.0~93.3kPa). When the membrane was cleaned with water, the recovery rate of water flux were larger for lower applied pressure. The results indicated that the process of direct solid-liquid separation using HMF membrane was effective at lower pressure.

  • PDF

Membrane Morphology: Phase Inversion to Electrospinning

  • Chanunpanich N.;Byun Hongsik;Kang Inn-Kyu
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.85-104
    • /
    • 2005
  • Recently, membrane can be prepared by two methods, phase inversion and electrospinning techniques. Phase inversion technique is a conventional but commercially preparation membrane. The most versatile of preparation in this technique is immersion of the cast film into nonsolvent bath, causing dense top layer with a finger-like pattern in the sub layer membrane. The membrane pore size getting from phase inversion is in the range of micro or submicrometer. As a result, it can be used as microfiltration and ultrafiltration applications. A new technique, electrospinning, is introduced for membrane preparation. Nonwoven nanofibrous mat or nanofibrous membrane is obtained. In this technique, electrostatic charge is introduced to the solution jet, causing a thin fiber with high surface area; hence it can be used in the applications where high surface area-to-volume or length-to-diameter ratios are required. Moreover, the pore size can be controlled by controlling the time of electrospinning. Hence, it can be used as a filter for filtering microparticles as well as nanoparticles.

Effect of Ozonation in Microfiltration Membrane for Wastewater Reuse (정밀여과법 하수재이용 공정에서 오존의 전처리 효과에 관한 연구)

  • Moon, Seong-Yong;Ahn, Se-Hyuk;Lee, Sang-Hyup;Park, Jong-Hoon;Hong, Suk-Won;Choi, Yong-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.535-543
    • /
    • 2006
  • The Ozone oxidation process was applied to increase the efficiency of reuse process when treating the secondary effluent by the membrane system. This paper focus on decreasing efficiency of membrane fouling, because of membrane fouling reduction by ozone and evaluation of application of the ozone oxidation. The feed water was secondary effluent from BNR process. The result shows that the ozone pretreatment can reduce membrane fouling effectively. Also, the improvement of treated water quality was obvious. The reduction of the membrane fouling led decrease of following pollutant and increase of lnner adsorptive ability of hydrophilic organic matter and decrease of molecular weight. MF membrane process alone can meet the domestic reuse water standards. And ozone pretreatment process also can increase the removal rates of turbidity, COD, nitrogen, and color.

Recovery Increase by Recycling Backwash Residuals in Microfiltration System

  • Yu, Myong-Jin;Pak, Hong-Kyoung;Sung, Il-Wha
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.13-21
    • /
    • 2008
  • With the rise in membrane applications, residuals management has become a growing challenge for membrane system. The primary residuals of MF/UF (microfiltration/ultrafiltration) system results from the wastes generated during backwashing. Many regulatory agencies, utilities, and water process engineers are unfamiliar with the characteristics and methods for treatment and disposal of membrane residuals. Therefore, this study was performed to investigate the backwash residuals water quality from the pressurized system with and without pre-coagulation, and to suggest approaches for the backwash residuals treatment. Pressurized MF system was installed at Guui water intake pumping station and operated with raw water taken from the Han River. We compared performances with and without the recycling backwash residuals at flux conditions, 50 LMH and 90 LMH with and without pre-treatment (coagulation). Based on the results, recycling of backwash residuals in pressurized system with pre-coagulation showed applicability of backwash residuals managements. Moreover, the recovery rate also increased up to over 99%.

Hybrid Water Treatment of Photocatalyst Coated Polypropylene Beads and Ceramic Membranes: Effect of Membrane and Water Back-flushing Period (광촉매 코팅 폴리프로필렌 구와 세라믹 분리막의 혼성수처리: 분리막과 물 역세척 주기의 영향)

  • Park, Jin Yong;Hwang, Jung Hye
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • Effect of water back-flushing period (FT) was investigated in hybrid water treatment process of carbon ultrafiltration and polypropylene (PP) beads coated with photocatalyst, and membrane effect was studied by comparing the previous studies with carbon microfiltration or alumina ultrafiltration, microfiltration membranes. FT 6 min was the most effective to control initial membrane fouling and optimal condition because the membrane fouling resistance was low until initial 60 min and the maximum total permeate volume was acquired at this FT. The turbidity treatment efficiency was high beyond 98.6%, and did not depend on FT, which was same with the previous result of carbon or alumina microfiltration. The organic matters treatment efficiency was the highest value of 98.2% at FT 6 min, which was almost same trend with the previous result of alumina microfiltration. Then the organic matters treatment efficiency of carbon microfiltration was the minimum at no back-flushing (NBF) and increased as decreasing FT, but that of alumina ultrafiltration was the maximum at NBF and also increased as decreasing FT. Therefore it means that water back-flushing effect on the organic matters treatment efficiency had a different mechanism depending on pore size in spite of the same material membranes.