• Title/Summary/Keyword: Microfibril

Search Result 41, Processing Time 0.03 seconds

Studies on Variablity of Wood Properties in Stem of Pinus koraiensis(III) -Variations in Tracheid Length and Width, Microfibril Angle and Compression Strength in the Longitudinal Direction- (잣나무 수간내 재질변동에 관한 연구(III) -가도관장.폭, 마이크로피브릴경사각, 압축강도의 수고방향 변동-)

  • 김병로;민두식
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 1999
  • Variations in the wood quality were analyzed to utilize Korean pine (Pinus koraiensis S. et Z.) efficiently and to develop suitable use, depending on the stem location. Variations in the tracheid length and width, microfibril angle, compression strength were measured at the heights of 0.3, 1.3, 2.3, and 5.3m in the longitudinal direction of the 20m pine and they were analyzed by Duncan`s multiple range test. Variations in the tracheid length, width and compression strength did not show significant difference, whereas those in the microfibril angle showed significant difference. However, the microfibril angle did not vary with the height of trees, showing inconsistent pattern in change.

  • PDF

Studies on Variability of Wood Properties in Stem of Pinus koraiensis (II) - Differences in Tracheid Length, Microfibril Angle, and Compression Strength in South and North Sides of Stem -

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.45-50
    • /
    • 1998
  • Tracheid length, microfibril angle, and compression strength were examined in south and north sides of Pinus koraiensis. The sample tree was 57 years old and had been planted in central Korea. Tracheid length on the south side of the tree ranged from 2.87 to 3.40mm and on the north ranged from 3.60 to 3.53mm and mean values were 3.15 mm for the south and 3.26mm for the north. Tracheid length was 0.11 mm longer on the north side than on the south. Microfibril angle on the south side ranged from $12.6^{\circ}$ to $20.3^{\circ}$ and that on the north from $6.8^{\circ}$ to $13.5^{\circ}$; mean values were $16.6^{\circ}$ on the south side and $9.6^{\circ}$ on the north. Microfibril angle was $7.0^{\circ}$ greater on the south side than on the north side. For compression strength on the south and north sides, significant difference at the 95% level was found only at l.3m above the ground level of the sample tree; for compression limit stress, significant difference at this level was found at 1.3 and 5.3m above the ground level. However, compression strength and compression limit stress were greater on the north side than on the south side.

  • PDF

Studies on Variability of Wood Properties within Stem of Larix kaemferi (II) - Difference in Tracheid Length and Width, Microfibril Angle, and Strength in South and North Sides of Stem - (일본잎갈나무 수간내 재질 변동에 관한 연구(II) - 가도관 길이와 폭, 마이크로피브릴 경각, 강도의 남북방향의 변동 -)

  • Rlee, So-Mi;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.21-28
    • /
    • 2005
  • Tracheid length and width, microfibril angle, compressive, bending, and impact strengths between the south and north sides of stem pith in Larix kaemferi were measured. Sample trees were 30 years old which had planted in the central region of Korea. In general, there were no difference in the tracheid length and width, microfibril angle, and strengths between the two sides. And no difference in tangential shrinkage and strengths between the two sides was thought to be due to identical microfibril angle between the two sides.

A Simpler Method to Estimate the Elastic Constant of Collagen-like Microfibril Using Voigt-Reuss Bounds (복합재료역학을 이용한 콜라겐 단백질 마이크로피브릴의 탄성율 예측 개선)

  • Yoon, Young-June;Bae, Cheol-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.194-198
    • /
    • 2010
  • The effective Young’s modulus of a microfibril surrounded by water may be simply calculated by using the upper (Voigt) and lower (Reuss) bounds, which is one way to estimate the Young’s modulus in composite materials. The Steered Molecular Dynamics (SMD) has been used for estimating the Young’s modulus of a microfibril surrounded by water. In this paper, the result estimated by the upper (Voigt) and lower (Reuss) bounds shows 9.2% to 21.8% discrepancy from the result estimated by SMD, but introducing “efficiency of reinforcement parameter” removes the discrepancy and shows good agreement with the result estimated by SMD. We found the best fit for the Young’s modulus against the size of the gap between microfibrils. Also the steps using these bounds are much simpler than SMD.

Microfibril Angle Characteristics of Korean Pine Trees from Depending on Provinces

  • KIM, Ji-Yeol;KIM, Soo-Chul;KIM, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.569-576
    • /
    • 2020
  • This study investigated the characteristics of microfibril angle(MFA) in order to see if there was any difference in pine tree lumber quality among the three mountain areas surrounding the Taebaek Mountains in Korea - Yeongdong (Goseong-gun), Yeongseo (Hongcheon-gun) and Yeongnam (Bonghwa-gun). Pine trees of each mountain area were divided into earlywood and latewood in relation to heartwood part (1959 ~ 1961, 3 annual rings) and sapwood part (2002 ~ 2004, 3annual rings), and measured at tangential section. The microfibril angle showed significant differences between mountain areas. In general, Goseong Mountain was found to have 37.35°, followed by Hongcheon Mountain 32.42° and Bonghwa Mountain 25.75°, in order. The sapwood part had larger angle than heartwood part; and earlywood, than latewood. Variation within a single annual ring tended to be smaller from earlywood toward latewood.

Relationship between Anatomical Properties and Modulus of Rupture (MOR) of Larix kaempferi Carr

  • Oh, Seung-Won
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Larix kaempferi is a tree with a major economic impact and is processed in large quantity every year in Korea. This study was carried out to collect basic data for the reasonable use of Larix kaempferi and to investigate the relation between anatomical properties and modulus of rupture (MOR) for heartwood and sapwood. As the length of earlywood tracheid and the radial wall thickness of earlywood tracheid and latewood tracheid increased, the modulus of rupture (MOR) increased, but decreased with increasing microfibril angle. Statistical analysis by the stepwise regression technique shows that the main factors affecting the modulus of rupture (MOR) of heartwood are the microfibril angle and the radial wall thickness of latewood tracheid, while those affecting MOR of sapwood are the length of earlywood tracheid and the microfibril angle.

Nondestructive Microfailure and Interfacial Evaluation of Plasma-Treated PBO and Kevlar Fibers/Epoxy Composites using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 플라즈마 처리된 PBO와 Kevlar 섬유강화 Epoxy 복합재료의 비파괴적 파단특성 및 계면물성 평가)

  • 박종만;김대식;김성룡
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.74-79
    • /
    • 2003
  • Comparison of interfacial properties and microfailure mechanisms of oxygen-plasma treated poly(p-phenylene-2,6-benzobisoxazole(PBO. Zylon) and poly(p-phenylene terephthalamide)(PPTA, Kevlar) fibers/ epoxy composites were investigated using micromechanical technique and nondestructive acoustic emission(AE). Interfacial shear strength(IFSS) and work of adhesion, Wa of PBO or Kevlar fibers/epoxy composites increased by oxygen-plasma treatment. Plasma-treated Kevlar fiber shooed the maximum critical surface tension and polar term, whereas the untreated PBO fiber showed the minimum value. Microfibril fracture pattern of plasma-treated Kevlar fiber appeared obviously. Based on the propagation of microfibril failure toward core region. the number of AE events for plasma-treated PBO and Kevlar fibers increased significantly. The results oi nondestructive AE were consistent well with microfailure modes by optical observation in microdroplet and two-fiber composites tests.

Structure of Opposite Wood in Angiosperms(II) - Structure of Opposite Woods in the Horizontal-growing Stems of Immature Woods - (활엽수(闊葉樹) Opposite재(材)의 구조(構造)(II) - 수평(水平) 생장(生長)시킨 유영목수간(幼 令木樹幹)의 Opposite재(材) 구조(構造) -)

  • Park, Sang-Jin;Park, Byung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.20-27
    • /
    • 1989
  • This experiment was made to find the peripheral variations of annualring widths, the cell dimensions, microfibril angles and bulk densities within each annual-ring of horizontal-growing young tree of beech(Betul a platyphylla var. japonica) and Oak (Quercus variabilis) from the tension to the opposite side. Also a comparision between the features of the obnormal annual ring for horizontal-growing year and normal annual ring for the straight-growing years was made. The dimension of propotion of the element, the microfibril angles and the bulk density decreased or increased continuously toward opposite side which showed minimum or maximum value. The dimension of elements the microfibril angles and the bulk density decreased or increased continuously towards opposite side which showed minimum or maximum value. The dimension of elements. the microfibril angles and the bulk density in the normal annual rings were similar to those in the lateral woods. whereas were significantly more different in the tension wood than in the opposite wood. The features of typical opposite wood in the hardwoods were influenced by the locations within the inclined stems than effects of the decrease in the annual ring width. The oppostie woods in hardwoods did not conform to the tension wood and lateral wood. The abnormal annual ring included the opposite wood, lateral wood similar to normal wood and tension wood having specialized structure even in the same annual ring.

  • PDF

Variation of Microfibril Angle Within Stems of Three Commercial Softwoods Grown in Korea (국내산 주요 침엽수 3종의 수간 내 마이크로피브릴 경사각의 변이)

  • Eun, Dong-Jin;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.77-83
    • /
    • 2008
  • Radial and axial variations of microfibril angle (MFA) within stems of three commercial softwoods (Pinus densiflora, Pinus koraiensis and Pinus rigida) grown in Korea were examined by iodine crystal deposition method. The average MFA were $16.4^{\circ}$ in Pinus densiflora, 14.4, in Pinus koraiensis, and $26.2^{\circ}$ in Pinus rigida, respectively. The MFA in earlywood and latewood decreased with age to about 15~20 years, and then remained almost constant. The MFA of latewood was slightly smaller than that of earlywood. The MFA in the three species was a little smaller at the base of stem and decreased slightly with increasing tree height, but no significant difference by height was identified only in earlywood of Pinus rigida. Consequently, it was considered that the MFA could be an useful index for identifying juvenile wood and adult wood of Pinus densiflora, Pinus. koraiensis and Pinus rigida.