• Title/Summary/Keyword: Microcystis spp.

Search Result 47, Processing Time 0.021 seconds

Growth Kinetics of Phytoplankton in Shallow Eutrophic Reservoir (얕은 부영양 저수지에서의 식물플랑크톤 성장 역학)

  • Kim, Ho-Sub;Hwang, Soon-Jin;Kong, Dong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.550-555
    • /
    • 2008
  • This study was conducted to assess the growth characteristics of phytoplankton and to understand seasonal dynamics of phytoplankton in response to limiting nutrients in an agricultural reservoir from November 2002 to December 2003. Marked increase of chl.a concentration observed in July ($99.0{\mu}g/L$) and November ($109.7{\mu}g/L$) after heavy rainfall. TP concentration ranged $48.0{\sim}126.6{\mu}g/L$, and its the temporal variation was similar to that of chl.a concentration. Microcystis spp., dominant phytoplankton species were used for the growth kinetics experiment, except for the season when Aulacoseira spp. (March, April) and Aphanocapsa sp. (May) dominated. In the temperature range between $10{\sim}25^{\circ}C$, the rate of growth increase per $10^{\circ}C$ was almost two folds. The highest maximum growth rate (${\mu}_{max}=1.09day^{-1}$) of phytoplankton observed September, and ${\mu}_{max}$ was lowest ($0.34day^{-1}$) in March when Aulacoseira spp. dominated. The ${\mu}_{max}$ ($0.78{\pm}0.20day^{-1}$) was relatively high in the summer season when water temperature is above $20^{\circ}C$ and cyanobacteria dominated compared to the spring when diatoms dominated ($0.43{\pm}0.08day^{-1}$). The maximum growth rate ($0.55{\pm}0.12day^{-1}$) and the half saturation concentration ($K_s=0.73{\pm}0.15{\mu}M$) of cyanobacteria during winter season (November, December) was higher than those of diatoms. However, the ${\mu}_{max}$ and $K_s$ of cyanobacteria in December was similar to those of diatom, reflecting that diatom cell quota (Mean 48.4 pgP/cell) was greater than cyanobacteria (34.0 pgP/cell) during this time.

Effect of Climate Change for Cyanobacteria Growth Pattern in Chudong Station of Lake Daechung (기후변화에 따른 대청호 추동지점에서의 남조류 발생 패턴 분석)

  • Noh, SungYu;Park, HaeKyung;Choi, HeeLak;Lee, JaeAn
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.377-385
    • /
    • 2014
  • To study the fluctuations and relationship in climate change, environmental factors and cyanobacteria communities, we investigated Chudong station of the Daechung reservoir. The average annual temperature showed the maximum value ($13.9^{\circ}C$) from 1994, showed a gradually increasing pattern from 1969 to 2010 in the Daechung reservoir. The number of days with temperatures over $20^{\circ}C$, minimum temperature of the year and average temperature of the winter season patterns also showed a significant increase. The long-time changed in the annual precipitation were not showed a significant variation. The water temperature record comparatively high value in summer, declined in winter. At all period, the phytoplankton were highest biomass in July 2000, and then, showed comparative higher biomass in the summer months. Cyanobacteria taxa were also showed more than 50%. Emergence of cyanobacteria also appeared in November 2007, were prolonged emergence. The dominant genera of taxa were the dominant sphere (Microcystis spp.) until early 2000. After that, the dominant species were the dominant linear (Aphanizomenon spp., Anabaena spp.). Cyanobacteria were the most correlated with water temperature (r = 0.341, p<0.01) and phosphate concentration (r = 0.355, p<0.01).

Succession of Cyanobacterial Species and Taxonomical Characteristics of Dolichospermum spp. (Nostocales, Cyanophyceae) in the Weir Regions of the Nakdong River (낙동강 보 구간에서 남조류의 천이 및 Dolichospermum 속(Nostocales, Cyanophyceae)의 분류학적 고찰)

  • Ryu, Hui-Seong;Shin, Ra-Young;Seo, Kyung-Ae;Lee, Jung-Ho;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.503-513
    • /
    • 2018
  • Freshwater cyanobacterial genus Dolichospermum is one of the most commonly spotted types of phytoplankton, whereas a limited number of studies on morphology of Dolichospermum spp. have been performed in South Korea. The purpose of this study is to investigate the succession pattern of cyanobacteria after weir construction, as well as morphological characteristics of Dolichospermum spp. from natural samples collected in the weir regions of Nakdong River. A total of 31 cyanobacterial taxa observed in this study were classified as belonging to 15 genera, 5 families, and 3 orders. Among them, morphological characteristics in the four species were classified into genus Dolichospermum, for most of the planktic former members of the genus Anabaena, were observed through light microscopy. Water bloom frequently occurred in the middle region of Nakdong River, the maximum number of cyanobacterial species appeared in the lower region of Nakdong River. The appearance of order Chrooccocales was only observed during summer when population density of Microcystis aeruginosa reached an annual peak. In contrast, filamentous cyanobacteria was observed throughout the whole year, even if when water temperature was lower than $5^{\circ}C$. It implied that the low-temperature-adapted filamentous cyanobacteria can grow in a range of water temperatures. Coil diameter of D. crassum from natural samples was $75{\sim}140{\mu}m$ ($ave.=91.3{\mu}m$; n = 94), slightly larger than those reported by previous studies. Dolichospemum smithii ($Kom{\grave{a}}rek$) Wacklin et al. 2009, was described for the first time in Nakdong River.

Spatio-temporal Characteristics of Cyanobacterial Communities in the Middle-downstream of Nakdong River and Lake Dukdong (낙동강 중, 하류 및 덕동호의 시·공간적 남조류 군집 특성)

  • Park, Hae-Kyung;Shin, Ra-Young;Lee, Haejin;Lee, Kyung-Lak;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.286-294
    • /
    • 2015
  • Temporal and spatial characteristics of cyanobacterial communities at the monitoring stations for Harmful Algal Bloom Alert System (HABAS) in Nakdong River and Lake Dukdong were investigated for two years (2013 to 2014). A total of 30 cyanobacterial species from 14 genera were found at the survey stations. Microcystis sp. showed maximum cell density in the total cyanobacterial community in August, 2014 at ND-2 and in September, 2013 at ND-3 station. Lynbya limnetica and Geitlerinema sp., non-target species for alert criteria showed maximum cell density at ND-1 (August, 2013) and Dam station of Lake Dukdong (September, 2014), respectively. Total cyanobacterial cell density and the relative abundance of four target genera (Microcystis, Anabaena, Aphanizomenon and Oscillatoria spp.) for alert criteria was relatively lower in the mesotrophic Lake Dukdong than at the eutrophic riverine stations of Nakdong River, indicating cyanobacterial density and the RA of target genera is affected by the trophic state of the monitoring stations. Simulating the alert system using phycocyanin concentration as an alert criterion resulted in the longer period of alert issued compared to the period of alert issued using the current criterion of harmful cyanobacterial cell density due to the influence of phycocyanin concentration from non-target cyanobacterial species.

Effects of Light-Blocking on Water Quality and Phytoplankton Community in Lake Juam (주암호에서 수질과 식물플랑크톤 군집에 미치는 광 차단효과)

  • Lee, Yong-Woon;Lee, Hak-Young
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.150-160
    • /
    • 2003
  • This study was carried out to assess inhibitory effects of light-blocking on water quality and phytoplankton community in Lake Juam from August to November 2000. The values of water temperature, DO, TN, $NO_3-N$, $NH_4-N$, TP, DIP, COD, SS and PH did not show clear differences between inside and outside light-blocked areas. Concentrations of Chl-a decreased -6.6${\sim}$40% (mean 14.7%) from inside of the light-blocked area by light blocking. During the study, 55 species of phytoplankton were indentified, and the dominant species were Microcystis aeruginosa, Aulacoseira granulata, Peridinium sp., Synedra spp., Oscillatoria sp., Fragilaria construens, and Trachelomonas sp. The successional pattern of dominant phytoplankton was diatoms (July)${\to}$ diatoms/cyanophytes (August-September)${\to}$cyanophytes (October)${\to}$ diatoms (October-November). The standing crop of phytoplankton showed maximum density in 22 September with $1.1{\times}10^4$cells/L, and minimum in 25 October with $4.7{\times}10^3$ cells/L. The decreasing efficiency of standing crop by light-blocking was 8${\sim}$38% (mean 19.9%). Through this study we found that blocking light seems to have a decreasing effect on the density of phytoplankton.

Temporal and Spatial Distribution of Microbial Community and Odor Compounds in the Bukhan River System (북한강 수계 미소생물 군집 및 이취미 물질의 시공간적 분포 특성)

  • Byun, Jeong-Hwan;Yu, Mina;Lee, Eunjeong;Yoo, Soon-Ju;Kim, Baik-Ho;Byun, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.299-310
    • /
    • 2018
  • Odor compounds (geosmin, 2-MIB) have been causing problems in the Bukhan River system, but the causative organisms have not been clearly identified. To evaluate the relationship between dynamics of microbial community and odor compounds, two times monthly monitoring of water quality and microbial community from the three serial lakes (Lake Uiam, Lake Cheongpyeong and Lake Paldang) in the Bukhan River system were conducted from April to October 2017. The odor compounds were analyzed by HS-SPME analysis method using GC/MS. Bacteria communities were identified at the class level by NGS analysis. Actinobacteria and Betaproteobacteria were dominant taxon in bacteria community of three serial lakes. In the case of phytoplankton communities showed that seasonal changes by Bacillariophyceae and Cryptophyceae in spring, Cyanobacteria in summer, and Bacillariophyceae and Cryptophyceae in autumn. Dominant species was Dolichospermum (=Anabaena), Microcystis and Pseudanabaena in Bukhan River system in all study period. At the same time the odors geosmin and 2-MIB were also detected at high concentration. There is a significant positive correlation between proportion of Actinobaceria and 2-MIB concentration (r=0.491, p<0.01). In addition, proportion of cyanobacteria showed a significant correlation of geosmin (r=0.381, p<0.05) and 2-MIB (r=0.386, p<0.05) concentration. In this study, odor compounds in the Bukhan River system are considered to be a direct relationship between with Actinobacteria and cyanobacteria.

Dynamics of Phytoplankton Communities of Major Dam Reservoirs in Han River System (한강 수계 주요 인공댐호의 식물플랑크톤 군집 동태)

  • Youn, Seok Jea;Park, Hae-Kyung;Shin, Kyoungae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.317-325
    • /
    • 2010
  • This study was to investigate phytoplankton communities and to evaluate the effects of hydrological and physical-chemical environmental factors in major five dam reservoirs in the Han River water system. Annual average of chlorophyll a concentration in Lake Paldang, Lake Cheongpyeong and Lake Doam was higher than that of Lake Chungju and Lake Hoengseong. The opposite seasonal variation patterns of phytoplankton growth were observed in dam reservoirs; the highest biomass in spring of dry season in Lake Paldang, Lake Cheongpyeong which are the river-type reservoirs and Lake Doam where turbidity was high throughout the year, and in summer and autumn of rainy season in Lake Chungju and Lake Hoengseong which are the lake-type reservoirs, indicating that the seasonal pattern for growth of phytoplankton in on-river reservoirs is mainly determined by hydrologic characteristics. The dominant species of phytoplankton in Lake Paldang, Lake Cheongpyeong and Lake Doam, where the concentration of nutrients was relatively high, were Bacillariophyceae such as Stephanodiscus hantzschii, Aulacoseira granulata var. angustissima in Lake Paldang and Lake Cyeongpyeong and Nitzschia spp. in Lake Doam throughout all season. The dominant species of phytoplankton in Lake Chungju and Lake Hoengseong which showed the oligo-mesotrophic state, were Bacillariophyceae such as Stephanodiscus hantzschii, Cyclotella pseudostelligera in spring and winter, but Cyanophyceae such as Microcystis spp. in summer.

Phytoplankton Community in Junam Reservoir by Pollution Sources, Loads and Water Quality (주남저수지 유역의 오염원과 수질변동에 따른 식물플랑크톤 군집)

  • Lee, Hae-Jin;Seo, Jung-Kwan;Jeong, Hyun-Ki;Tak, Bo-Mi;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1445-1456
    • /
    • 2010
  • This study presented seasonal changes of the phytoplankton community in Junam reservoir by pollution and water quality of the lake. The water storage of the reservoir is 5.3 million ton, most of which are being utilized for agricultural, industrial and residential purposes. The annual precipitation during the investigation period was 1,868.9 mm, increasing by 20% from the average annual level of 1,506.7 mm in 2009. The annual average water storage was 57.3%. It decreased during agricultural season and then increased again after monsoon rainfall. The loads of BOD were $3,799kgday^{-1}$, and 81% of them came from livestock and household. The TN and TP loads were $1,164kgday^{-1}$ and $170kgday^{-1}$, respectively, and 76% of them came from livestock. We assessed water quality of the Junam reservoir using 17 variables. According to the result, the reservoir met the fourth grade, meaning slightly bad, because of high concentration of COD, SS and chlorophyll-a. Eutrophication assessment was conducted by revised Carlson's Index (TSIm, Aizaki), and it was found that the entire lake was eutrophicated with high chlorophyll-a concentration all through the year, except during February to April and in July. A total of 76 phytoplankton species were identified from the samples. Among them, the largest number of species were Chlorophyceae with 33 species(43.4%), followed by Bacilliophyceae with 27 species(35.5%), Cyanophyceae with 8 species(10.5%), and Cryptophyceae with species(10.5%). The total cell number of phytoplankton was the highest in October(7,884 cells $mL^{-1}$) among Cyanophyceae and Bacilliophyceae. The seasonal succession of Chlorophyceae (Chlamydomonas spp.), Cyanophyceae(Microcystis aeruginosa) and Cryptophyceae(Rhodomonas spp.) was observed during January to May, July to September and October to December respectively.

Dynamics of Water Environmental Factors and Phytoplankton Before and After Inflow of Seawater in Shingwa Reservoir (시화호에서 해수유입 전.후의 수환경 요인과 식물플랑크톤 동태)

  • 신재기;김동섭;조경제
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.115-123
    • /
    • 2000
  • The dynamics of water quality and phytoplankton population had examined by monthly sampling from the upper to the lower part of watergate in an artificial Shihwa Reservoir in which situated near newly cities and incustrial complex on the west coast of Korea from January 1997 to December 1998. Among environmental factors, yearly average concentration of chl-a, TN and TP seemed to eutrophic or hypertrophic conditions that ranged 146.4~245.8 $\mu\textrm{g}$/$\ell$, 1.6~2.7 mg N/$\ell$, 258~448 $\mu\textrm{g}$ P/$\ell$, 26.9~80.7 $\mu\textrm{g}$/$\ell$, 1.0~2.4 mgN/$\ell$ and 74~239 $\mu\textrm{g}$P/$\ell$ respectively. Water quality was extremely deteriorated to consistently accumulation into inner reservoir by load of pollutants from autochthonous and allochthonous until early July 1997 after embankment. Water pollution of Shihwa Reservoir was remarkble on the biological condition with largely persistent bloom of phytoplankton and increase rate of standing crops was 2.4/yr. The development trend of phytoplankton in water ecosystem were closely related to increse and decrease of physico-chemical factors and those scale seemed to control by nutrient contents. Inflow of seawater into reservoir to object of repair of water quality. As to see dominant species, composition of those composed to mostly freshwater algae before inflow of seawater such as Selenastrum capricornutum of green algae, cyclotella atomus, C. meneghiniana of diatom and Microcystis spp. of blue-green algae and the other hand brackish algae were dominated after inflow of seawater such as Chaetoceros dicipiens, Skeletonema costatum of diatom, Dinophysis acuminata, Gymnodinium mikimotoi, G. sanguineum, Gyrodinium spirale, Prorocentrum minmum of dinoflagellate and Eutreptiella gymnastica of euglenoid. Moreover, small flagellates including Chroomonas spp. of cryptomonad were abundant throughout the year. The cause of water deterioration during fill of the freshwater were complexly supported with extra and intra parameters. The variation pattern of phytoplankton were related to water temperature and salinity by inflow of seawater based to plentiful nutrients. The dynamics of phytoplankton were assessed to ecosystem that clearly condition of dominant by unique or a few angel species seasonally.

  • PDF

Seasonal Variation of Phytoplakton and Phylogenetic Characteristics of Cyanotoxin synthetase genes within Youngsan River in Gwangju (광주지역 영산강 내 식물플랑크톤의 계절적 변동과 남조류 독소합성유전자의 계통발생학적 특성)

  • Haram Kim;Gwangwoon Cho;Gyeongrok Son;Dong, Jang;Gwangyeob Seo;Yunhee Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.315-328
    • /
    • 2023
  • Cyanobacteria have been used as pollution indicator species in freshwater ecosystems, and identifying their fluctuations can be an important part about management of surface waters globally. Cyanotoxins produced by cyanobacteria are directly or indirectly a threat to human and environmental health. In order to confirm the potential risk of these cyanotoxins, the fluctuations of phytoplankton and phylogenetic analysis of cyanotoxin synthetase genes were conducted at each point in the Yeongsan River water system in Gwangju from November 2021 to October 2022. Diatoms which grow well in winter were dominant at 99.4 ~ 99.5%, and diatoms and green algae were dominant from the spring to autumn when the water temperature rises. Stephanodiscus spp. were dominant at 92.7 to 97.5 % at all sites in the winter, and Aulacoseira spp., which grow in warm water temperatures, were dominant in summer and autumn. Microcystis aeruginosa was dominant at 25.2% in summer only at site 5. mcyB and anaC have been detected as cyanotoxin synthetase genes. The phylogenetic tree of anaC could be divided into two groups (Group 1 & Group 2). Group 1 contained Aphanizomenon sp. and Cuspidothrix issatschenkoi. It is combined with Aphanizomenon sp. and Cuspidothrix issatschenkoi, which are known to produce cyanotoxins.