• Title/Summary/Keyword: Microcontact distribution

Search Result 2, Processing Time 0.017 seconds

Effect of Contact Statistics on Electrical Contact Resistance (전기접촉저항에 관한 접촉통계치의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1080-1085
    • /
    • 2003
  • The flow of electrical current through a microscopic actual contact spot between two conductors is influenced by the flow through adjacent contact spots. A smoothed version of this interaction effect is developed and used to predict the contact resistance when the statistical size and spatial distribution of contact spots is known. To illustrate the use of the method, an idealized fractal rough surface is defined using the random midpoint displacement algorithm and the size distribution of contact spots is assumed to be given by the intersection of this surface with a constant height plane. With these assumptions, it is shown that including finer scale detail in the fractal surface, equivalent to reducing the sampling length in the measurement of the surface, causes the predicted resistance to approach the perfect contact limit.

  • PDF

Multiscale Characteristics of Electrical Contact Resistance (전기접촉저항의 멀티스케일 특징)

  • Lee, Chang-Wook;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.404-409
    • /
    • 2004
  • The electrical contact resistance is here estimated using the multiscale microcontact distribution of elastic contact between rough surfaces, simulated from the Archard's model, and the electrical contact conduction theory suggested by Greenwood. These analysis confirms that the electrical contact resistance is converged to a values, larger than would be obtained if the contact spots were widely separated and hence independent. In multiscale process, the base potential is close to the value of the potential difference between the contact surface and the extremity of body, suggesting a possibility to obtain the multiscale electrical contact resistance relations.

  • PDF