• Title/Summary/Keyword: Microcolumn electrode

Search Result 5, Processing Time 0.021 seconds

Fabrication and Test of Micro Direct Methanol Fuels using Platinum Sputtered Microcolumn Electrodes with a Limited Fuel Source (백금 촉매가 증착된 미소돌기 전극과 유한 연료를 가지는 극소형 직접메탄을 연료전지의 제작 및 성능 평가)

  • 서영호;조영호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.218-224
    • /
    • 2004
  • We present a miniature Direct Methanol Fuel Cell (micro-DMFC) using platinum sputtered microcolumn electrodes with a limited amount of fuel. We use the microcolumn electrode in order to improve the power density of the micro-DMFC that consists of two electrodes and polymer electrolyte. We also design the built-in fuel chamber in the anode for the portable electronics applications. We design and fabricate both microcolumn and planar electrodes, having an identical projective area of 5mm${\times}$5mm. The diffusion current density of the microcolumn electrode is 1.73 times higher than that of the planar electrode at electrode potential of 1.1V in the half-cell test. The micro-DMFC based on the microcolumn electrodes shows the maximum power of 10.8$\pm$7.54㎼(43.23$\pm$0.16㎼/$\textrm{cm}^2$) at the projective area of 5mm${\times}$5mm, while the planar electrode micro-DMFC shows the maximum power of 0.81$\pm$0.42㎼(3.24$\pm$1.68㎼/$\textrm{cm}^2$) at the same projective area. The micro-DMFC based on the microcolumn electrodes shows 13 times higher power density that the micro-DMFC based on the planar electrodes does.

Study on the Structural Design of an Ultra-miniaturized Microcolumn with a Built-in Electrostatic Octupole Stigmator (정전형 8중극 비점수차 보정기가 내장된 극초소형 마이크로컬럼의 구조 설계 연구)

  • Tae Sik Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.52-61
    • /
    • 2023
  • We designed a novel ultra-miniaturized microcolumn structure having an stigmator to significantly improve throughput per unit time, which is the biggest disadvantage of microcolumns. We adopted the structure of the stigmator in the form of an electrostatic octupole electrode, and used an electrostatic quadrupole deflector with a relatively simple structure considering the increase in wiring due to the introduction of the stigmator. We have dramatically reduced the effect of astigmatism that occurs when the electron beam probe is scanned to the periphery of the target by introducing the stigmator between the control electrode and the deflector. As our numerical analysis simulation results, the field of view obtained as a result of this study is about 46.3% improved compared to our previous study, and the electron beam probe size of less than 10 nm was achieved in the entire field of view.

  • PDF

MEMS-based Direct Methanol Fuel Cells and Their Stacks for the Reduction of Cell-to-Cell Deviation and Interconnection Voltage Drop (단위 셀간 성능편차 및 접속접안 강하 초소화를 위한 극소형 직접메탄올 연료전지 스택의 설계 및 제작)

  • Seo, Young-Ho;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.981-985
    • /
    • 2007
  • We present a MEMS-based portable Direct Methanol Fuel Cell (micro-DFMC), featured by a platinum sputtered microcolumn electrode and a built-in fuel chamber containing a limited amount of methanol fuel. Also presented is a micro-DMFC stack structure having a common electrolyte sandwiched by the microcolumn electrodes. The single cells with ME16 and PE16 electrodes show the maximum power densities of $31.04{\pm}0.29{\mu}W/cm^2$ and $9.75{\pm}0.29{\mu}W/cm^2$, respectively; thus indicating the microcolumn electrode (ME16) generates the power density (3.2 times) higher than the planar electrode (PE16). The single cell tests of ME16 and ME4 electrodes (Fig.8) show the maximum power of $31.04{\pm}0.29{\mu}W/cm^2$, and $25.23{\pm}2.7{\mu}W/cm^2$, respectively; thus demonstrating the increased window frame reduces the normalized standard power deviation (standard deviation over the average power). The normalized deviation of 0.11 in ME4 cell has been reduced to 0.01 in ME16 cell due to the increased window frames. The maximum power density of 4-cell stack is 15.7 times higher than that of the single cell. 4-cell stack produces the power capacity of 20.3mWh/g during 980min operation at the voltage of 450mV with the load resistance of $800{\Omega}$.

Study on the Scan Field of Modified Octupole and Quadrupole Deflector in a Microcolumn (마이크로칼럼에서 변형된 4중극 디플렉터와 8중극 디플렉터의 스캔 영역 비교)

  • Kim, Young Chul;Kim, Ho-Seob;Ahn, Seong Joon;Oh, Tae-Sik;Kim, Dae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.1-7
    • /
    • 2018
  • In a microcolumn, a miniaturized electrostatic deflector is often adopted to scan an electron beam. Usually, a double octupole deflector is used because it can avoid excessive spherical aberrations by controlling the electron beam path close to the optical axis of the objective lens and has a wide scan field. Studies on microcolumns have been performed to improve the low throughput of an electron column through multiple column applications. On the other hand, as the number of microcolumns increases, the number of wires connected to the components of the microcolumn increases. This will result in practical problems during the process of connecting the wires to electronic controllers outside of the vacuum chamber. To reduce this problem, modified quadrupole and octupole deflectors were examined through simulation analysis by selecting an ultraminiaturized microcolumn with the Einzel lens eliminated. The modified deflectors were designed changing the size of each electrode of the conventional Si octupole deflector. The variations of the scan field and electric field strength were studied by changing the size of active electrodes to which the deflection voltage was to be applied. The scan field increased linearly with increasing deflection voltage. The scan field of the quadrupole deflector and the electric field strength at the center were calculated to be approximately 1.3 ~ 2.0 times larger than those of the octupole deflector depending on the electrode size.

Study on the Characteristics of Electron Beam Dependent with the Structure of Wiggler in the Miniaturized Free Electron Laser Module (초소형 자유전자레이저 모듈에 있어서 위글러 구조에 따른 전자빔 특성 연구)

  • Kim, Young-Chul;Ahn, Seong-Joon;Kim, Dae-Wook;Kim, Ho-Seob;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1319-1326
    • /
    • 2011
  • We have investigated the characteristics of the electron beam (e-beam) in the miniaturized free electron laser module by using the commercial 3D simulation tool OPERA. The e-beam was made parallel before entering the slit-type wiggler by the negative bias applied to the central electrode of the electron lens. With respect to the different structures of the wiggler, we obtained the inner distributions of the electrical potential and the electric field, which was, in turn, used to calculate the trajectory of the e-beam in the wiggler.