Browse > Article
http://dx.doi.org/10.5762/KAIS.2018.19.11.1

Study on the Scan Field of Modified Octupole and Quadrupole Deflector in a Microcolumn  

Kim, Young Chul (Department of Optometry, Eulji University)
Kim, Ho-Seob (Department of Information Display, Sun Moon University)
Ahn, Seong Joon (Department of Information Display, Sun Moon University)
Oh, Tae-Sik (Department of Information Display, Sun Moon University)
Kim, Dae-Wook (Department of Information Display, Sun Moon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.19, no.11, 2018 , pp. 1-7 More about this Journal
Abstract
In a microcolumn, a miniaturized electrostatic deflector is often adopted to scan an electron beam. Usually, a double octupole deflector is used because it can avoid excessive spherical aberrations by controlling the electron beam path close to the optical axis of the objective lens and has a wide scan field. Studies on microcolumns have been performed to improve the low throughput of an electron column through multiple column applications. On the other hand, as the number of microcolumns increases, the number of wires connected to the components of the microcolumn increases. This will result in practical problems during the process of connecting the wires to electronic controllers outside of the vacuum chamber. To reduce this problem, modified quadrupole and octupole deflectors were examined through simulation analysis by selecting an ultraminiaturized microcolumn with the Einzel lens eliminated. The modified deflectors were designed changing the size of each electrode of the conventional Si octupole deflector. The variations of the scan field and electric field strength were studied by changing the size of active electrodes to which the deflection voltage was to be applied. The scan field increased linearly with increasing deflection voltage. The scan field of the quadrupole deflector and the electric field strength at the center were calculated to be approximately 1.3 ~ 2.0 times larger than those of the octupole deflector depending on the electrode size.
Keywords
MEMS; Microcolumn; Octupole deflector; Quadrupole deflector; Scan field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. H. P. Chang, M. Mankos, K. Y. Lee, L. P. Muray, "Multiple electron-beam lithography.", Microelectronic Engineering, Vol.57-58, pp.117-135, 2001. DOI: https://dx.doi.org/10.1016/S0167-9317(01)00528-7   DOI
2 A. C. Zonnevylle, C. Th. H. Heerkens, C. W. Hagen, P, Kruit, "Multi-electron-beam deflector array", Microelectronic Engineering, Vol.123, pp.140-148, 2014. DOI: https://dx.doi.org/10.1016/j.mee.2014.06.014   DOI
3 Z. Liu, J. Ximen, "A study of miniaturized electrostatic octupole deflectors", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol.363, No.1-2, pp.225-231, 1995. DOI: https://dx.doi.org/10.1016/0168-9002(95)00156-5
4 C. Stebler, T. Pfeffer, U. Staufer, N. F. de Rooij, "Microfabricated double layer octupoles for microcolumn applications", Microelectronic Engineering, Vol.46, No.1-4, pp.401-404, 1999. DOI: https://dx.doi.org/10.1016/S0167-9317(99)00118-5   DOI
5 H. Kim, C. Han, K. Chun, "The Novel Deflector for Multi Arrayed Microcolumn Using Microelectromechanical System (MEMS) Technology", Japanese Journal of Applied Physics, Vol.42, Part 1, No.6B, pp.4084-4088, 2003. DOI: https://dx.doi.org/10.1143/JJAP.42.4084   DOI
6 T. S. Oh, D. W. Kim, S. Ahn, H. S. Kim, "Improved design of 5 nm class electron optical microcolumn for manufacturing convenience and its characteristics", Journal of Vacuum Science & Technology A, Vol.31, No.6, Article ID 061601, pp.1-6, 2013. DOI: https://dx.doi.org/10.1116/1.4815953
7 T. S. Oh, H. S. Kim, S. Ahn, D. W. Kim, "Design of an ultra-miniaturized electron optical microcolumn with sub-5 nm very high resolution", Ultramicroscopy, Vol.136, pp.171-175, 2014. DOI: https://dx.doi.org/10.1016/j.ultramic.2013.10.003   DOI
8 H. S. Gross, F. E. Prins, D. P. Kern, "Fabrication and characterisation of an array of miniaturized electrostatic multipoles", Microelectronic Engineering, Vol.41-42, pp.489-492, 1998. DOI: https://dx.doi.org/10.1016/S0167-9317(98)00114-2   DOI
9 L. P. Muray, K. Y. Lee, J. P. Spallas, M. Mankos, Y. Hsu, M. R. Gmur, H. S. Gross, C. B. Stebler, T. H. P. Chang, "Experimental evaluation of arrayed microcolumn lithography", Microelectronic Engineering, Vol.53, No.1-4, pp.271-277, 2000. DOI: https://dx.doi.org/10.1016/S0167-9317(00)00313-0   DOI
10 E. Kratschmer, H. S. Kim, M. G. R. Thomson, K. Y. Lee, S. A. Rishton, M. L. Yu, S. Zolgharnain, B. W. Hussey, T. H. P. Chang, "Experimental evaluation of a 20$\times$20 mm footprint microcolumn", Journal of Vacuum Science & Technology B, Vol.14, No.6, pp.3792-3796, 1996. DOI: https://dx.doi.org/10.1116/1.588669   DOI
11 T. H. P. Chang, M. G. R. Thomson, E. Kratschmer, H. S. Kim, M. L. Yu, K. Y. Lee, S. A. Rishton, B. W. Hussey, S. Zolgharnain, "Electron-beam microcolumns for lithography and related applications", Journal of Vacuum Science & Technology B, Vol.14, No.6, pp.3774-3781, 1996. DOI: https://dx.doi.org/10.1116/1.588666   DOI