• Title/Summary/Keyword: Microchannel flow

Search Result 225, Processing Time 0.026 seconds

PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel Junction (T헝 마이크로채널 연결부 압력구동 유동의 PIV계측)

  • Choi Jayho;Lee In-Seop
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • A custom micro-PIV optics assembly has been used to measure the flow fold inside a T-junction of a microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620 nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of 2.0, 4.0, 6.0 mL/hr. The micro-channels are fabricated with PDMS with a silicon mold, then O$_{2}$ -ion bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results include PIV data with vector-to-vector distances of 2 $\mu$m with 32 pixel-square interrogation windows at 50$\%$ overlap.

  • PDF

Experimental Study on Slip Flows in Superhydrophobic Microchannel (초소수성 마이크로 채널 내 슬립 유동의 실험적 측정)

  • Kim, Ji-Hoon;Byun, Do-Young;Ko, Han-Seo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.84-87
    • /
    • 2007
  • Recently, many studies concern on the slip flow and slip length, which allow liquid flow to reduce drag force in microchannel. However, until now not enough investigation is performed experimentally to understand the slip flow in the superhydrophobic microchannel exhibiting riblet structures on vertical wall. Here we investigated and compared the slip flows according to the surface characteristics; hydrophilic, hydrophobic, and superhydrophobic wettabilities. Using the micro-PIV, velocity profiles can be obtained in the glass (hydrophilic), PDMS (hydrophobic), and micro-structured PDMS (superhydrophobic) microchannels. For both PDMS and superhydrophobic PDMS microchannels, we observed the slip effects showing the microscale slip lengths. Due to the micro-riblet, there are two distinctive flow characteristics on the riblet surface and the liquid meniscus in the valleys.

  • PDF

PIV Measurements of the Pressure Driven Flow Inside a T-Shaped Microchannel (T형 마이크로채널 내부 압력구동 유동의 PIV 계측)

  • Choi Jayho;Lee In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.423-426
    • /
    • 2002
  • A custom micro-PIV optics assembly has been used to measure the flow field inside a T-shaped microchannel. The micro-PIV system consists of microscope objectives of various magnifications, a dichroic cube, and an 8-bit CCD camera. Fluorescent particles of diameters 620nm have been used with a Nd:YAG laser and color filters. A programmable syringe pump with Teflon tubings were used to inject particle-seeded distilled water into the channel at flow rates of $420,\;40,\;60{\mu}L/hr$. The microchannels are fabricated with PDMS with a silicon mold, then $O_2-ion$ bonded onto a slide glass. Results show differences in flow characteristics and resolution according to fluid injection rates, and magnifications, respectively. The results show PIV results with vector-to-vector distances of $2{\mu}m$ with 32 pixel-square interrogation windows at $50{\%}$ overlap.

  • PDF

Numerical Analysis on Mixing in a Microchannel with Inhomogeneous Surface Charge (불균일 표면전하를 지닌 미소채널 내에서의 혼합에 관한 수치 해석적 연구)

  • Song, Kyung-Suk;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1004-1009
    • /
    • 2003
  • Electroosmotic flow induced by an applied electrostatic potential field in microchannel is analyzed in this study. The electroosmotic flow is an alternative to pressure driven flow in microchannels, but the usage has been limited to the simple cases. In this study, We analyze electroosmotic flow driven by inhomogeneous surface charge on the channel wall. The surface charge varies along a direction perpendicular to the electric field in order to generate the electroosmotic flow. A numerical results substantiate the highly efficient mixing performance. It is highly the beneficial to fabrication process since only straight microchannel rather than complex geometry is enough to yield efficient mixing.

  • PDF

Bubble Behavior in a Micro-Multi-Branched-Channel (마이크로 복수 분지관에서의 버블거동에 관한 연구)

  • Kim, Kyung-Chun;Ryu, Geon-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.32-36
    • /
    • 2006
  • Recently there are many researches about single flow and two-phase flow phenomena in the mini and microchannel. But from this result the principle in the microchannel was not explained clearly. In this paper two-phase flow pattern was visualized in the micro-multi-branched-channel using a high speed camera. Microchannel was fabricated with PDMS and glass slide. The velocity profile was obtained by a Micro PIV. Then flow boiling at the near inlet area was occurred and vapor was moved in the micro-multi-branched-channel.

  • PDF

Simultaneous Measurement of Internal and External Flow Fields around the Droplet Formation in a Microchannel (마이크로 채널 내 Droplet 형성에 따른 내${\cdot}$외부 유동장 동시측정)

  • Kim Kyung Chun;Kim Jae Min;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.80-83
    • /
    • 2004
  • This experiment has been carried out to measure the process of droplet formation between water phase fluid$(PVA\;3\%)$ and organic phase fluid(oil), Internal and External flow fields measured by a Dynamic Micro-PIV method Water-in-oil(W/O) droplets successfully generated at a cross junction and Y junction. Internal and external flow fields were measured when the droplet grew up, stretched and separated.

  • PDF

Effect of Geometric Parameters in a Newly Designed Microchannel

  • Heo H. S.;Suh Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.121-122
    • /
    • 2003
  • In this study a microchannel with various arrangement of blocks is newly proposed. This design comprises periodically arranged simple blocks. In this configuration, the stirring is greatly enhanced at a certain geometric parameter set. To characterize the flow field and the stirring effect both the numerical and experimental methods were employed. To obtain the velocity field, three-dimensional numerical computation to the Navier Stokes equations are performed by using a commercial code, FLUENT 6.0. The fluid-flow solutions are then cast into studying the characteristics of stirring with the aid of Lyapunov exponent. The numerical results show that the particles' trajectories in the microchannel heavily depend on the block arrangement. It was shown that the stirring is significantly enhanced at larger block-height and it reaches maximum when the height is 0.8 times the channel width. We also studied the effect of the block stagger angle, and it turns out that the stirring performance is the best at the block angel ${45^\circ}$.

  • PDF

Microfluidic Method for Measurement of Blood Viscosity based on Micro PIV (Micro PIV 를 기반한 혈액 점도 측정 기법)

  • Hong, Hyeonji;Jung, Mirim;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.14-19
    • /
    • 2017
  • Increase of blood viscosity significantly changes the flow resistance and wall shear stress which are related with cardiovascular diseases. For measurement of blood viscosity, microfluidic method has proposed by monitoring pressure between sample and reference flows in the downstream of a microchannel with two inlets. However, it is difficult to apply this method to unknown flow conditions. To measure blood viscosity under unknown flow conditions, a microfluidic method based on micro particle image velocimetry(PIV) is proposed in this study. Flow rate in the microchannel was estimated by assuming velocity profiles represent mean value along channel depth. To demonstrate the measurement accuracy of flow rate, the flow rates measured at the upstream and downstream of a T-shaped microchannel were compared with injection flow rate. The present results indicate that blood viscosity could be reasonably estimated according to shear rate by measuring the interfacial width and flow rate of blood flow. This method would be useful for understanding the effects of hemorheological features on the cardiovascular diseases.