• Title/Summary/Keyword: Microbial transglutaminase

Search Result 50, Processing Time 0.04 seconds

Effects of Red Bean (Vigna angularis) Protein Isolates on Rheological Properties of Microbial Transglutaminase Mediated Pork Myofibrillar Protein Gels as Affected by Fractioning and Preheat Treatment

  • Jang, Ho Sik;Lee, Hong Chul;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.671-678
    • /
    • 2016
  • Fractioning and/or preheating treatment on the rheological properties of myofibrillar protein (MP) gels induced by microbial transglutaminase (MTG) has been reported that they may improve the functional properties. However, the optimum condition was varied depending on the experimental factors. This study was to evaluate the effect of red bean protein isolate (RBPI) on the rheological properties of MP gels mediated by MTG as affected by modifications (fractioning: 7S-globulin of RBPI and/or preheat treatment (pre-heating; 95℃/30 min): pre-heating RBPI or pre-heating/7S-globulin). Cooking yields (CY, %) of MP gels was increased with RBPI (p<0.05), while 7S-globulin decreased the effect of RBPI (p<0.05); however, preheating treatments did not affect the CY (p>0.05). Gel strength of MP was decreased when RBPI or 7S-globulin added, while preheat treatments compensated for the negative effects of those in MP. This effect was entirely reversed by MTG treatment. Although the major band of RBPI disappeared, the preheated 7S globulin band was remained. In scanning electron microscopic (SEM) technique, the appearance of more cross-linked structures were observed when RBPI was prepared with preheating at 95℃ to improve the protein-protein interaction during gel setting of MP mixtures. Thus, the effects of RBPI and 7S-globulin as a substrate, and water and meat binder for MTG-mediated MP gels were confirmed to improve the rheological properties. However, preheat treatment of RBPI should be optimized.

Electron Microscopical Observation of Transglutaminase-treated Ultra High Temperature Milk Sedimiment (Transglutaminase로 처리한 초고온 살균유 침전물의 전자현미경적 관찰)

  • Moon, Jeong-Han;Hong, Youn-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1359-1366
    • /
    • 2004
  • Ultra high temperature treated (UHT) skim milk and colloidal calcium phosphate-free skim milk were treated with microbial transglutaminase (TGase), ultracentrifuged at various rates, lyophilized, and observed for morphological properties with a scanning electron microscope (SEM). UHT skim milk showed small holes of associated micelles at lower centrifugal rates, and became thick and irregular, and fine particles were associated regularly at higher centrifugal rates. When UHT skim milk with TGase was incubated for 1 hour, casein micelles aggregated and broadened as centrifugation rate increased. When UHT skim milk with TGase was incubated for 8 hours, casein micelles were associated irregularly to large aggregates and widened. Colloidal calcium phosphate-free skim milk with TGase incubated for 1 hour and separated by two-step centrifugation showed aggregated lump, while the milk incubated for 8 hours with TGase was associated with broadened, compact, and regular layers as the centrifugation rate increased. Such phenomena were caused by heat treatment, protein crosslinking reaction catalyzed by TGase and conformational changes of casein molecules, and could be dependent on reaction time, temperature and ultracentrifugation rate.

Rheological Properties of Pork Myofibrillar Protein and Sodium Caseinate Mixture as Affected by Transglutaminase with Various Incubation Temperatures and Times (Transglutaminase를 첨가한 돈육 근원섬유단백질과 카제인염 혼합물의 배양온도와 시간에 따른 물성변화)

  • Hwang, Ji-Suk;Lee, Hong-Chul;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.28 no.2
    • /
    • pp.154-159
    • /
    • 2008
  • To investigate the rheological properties of protein mixed gels mediated by microbial transglutaminase (MTGase), pork myofibrillar protein (MFP), sodium caseinate (SC) and their mixture (MS), the various gels were incubated at different temperatures for various times. Extracted MFP, SC and their mixture (MS, 1:1) were incubated at different temperatures ($4^{\circ}C$ vs $37^{\circ}C$) for various times (0, 0.5, 2, 4 hr), and assessed for viscosity, gel strength and other characteristics using differential scanning calorimeter (DSC) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). DSC measurements showed that incubation at $37^{\circ}C$ rather than $4^{\circ}C$ caused marked changes in thermal transition, and MS displayed similar thermal curves (three endothermic transitions) to MFP and SC alone. After incubation at $37^{\circ}C$ for 2 hrs, the viscosity (cP) of MS increased (p<0.05) due to induction by MTGase, whereas no differences were observed at $4^{\circ}C$. However, gel strength values were no different, regardless of incubation temperatures and times. Future research will address how longer incubation times affect the functionality of protein mixed gels mediated by MTGase.

저염 재구성 햄의 제조시 식염감소를 위한 Microbial Transglutaminase와 우유단백질의 이용

  • Lee, Hong-Cheol;Hwang, Ji-Suk;Jin, Gu-Bok
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2005.05a
    • /
    • pp.221-225
    • /
    • 2005
  • 본 연구는 식염첨가의 감소를 MTGase와 우유단백질을 첨가하여 보완하기 위하여 저지방 저염 재구성 햄을 제조하여 이화학적 및 조직학적 성상을 평가하였고, 1.5%의 식염이 첨가된 대조구와 기능성, 조직감 및 관능성을 비교하였다. 제조한 재구성 햄의 pH, 그리고 수분, 지방 및 단백질 함량은 각각 6.07-6.22, 68-72%, 2-5%, 18-22%였다. 색도와 보수력은MTGase와 우유단백질 첨가에 의해 영향 받지 않았다 (p>0.05). 반면에 가열감량은 식염첨가량과 우유단백질에 의해 차이를 보여 식염함량이 증가할수록 가열감량은 낮았고 카제인 염이 유청 단백질에 비하여 가열감량을 줄일 수 있었다 (p<0.05). 조직검사에서는 MTGase에 우유단백질 1%를 첨가한 처리구가 대조구에 비교한 결과, 경도를 제외한 조직검사에서 높은 값을 나타내었다. 관능평가에서는 1.0% 식염에 0.3% MTGase와 1% 우유단백질을 첨가한 재구성 햄이 기능적에서 대조구와 유사하였다. 이러한 결과는 0.3% MTGase에 1% 우유단백질을 첨가하는 것이 식염감소에 의한 재구성 햄의 결점을 보완함을 시사하였고 카제인 염 단백질은 MTGase의 기질로써 유청 단백질보다 더 효율적이었다.

  • PDF

Effect of Maleylation on Physicochemical Properties of Soybean Glycinin

  • Shin, Weon-Sun;Park, Soo-Jin;Park, Chun-Wuk;Kim, Kang-Sung
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.671-675
    • /
    • 2007
  • Soybean proteins appear to harbor a great deal of potential as functional ingredients due to the fact that they are composed of highly bioavailable peptides and amino acids. To develop drink- or gel-type foods formulated with soybean protein, the physicochemical properties of intact and chemically modified soy glycinin were assessed. Maleylation to soy glycinin altered the surface charges of glycinin via the modification of lysine residues, and subsequently generated the dissociation of glycinin subunits owing to the increase in charge repulsion. This modification thus improved the solubility of glycinin, particularly under acidic pH conditions. It is worthy of note that maleylation increased the susceptibility of the basic subunits of mTGase and the formation of a substantial quantity of molecules at a low protein solution concentration. The results of dynamic rheological studies indicated that the 5% intact glycinin progressively formed the gel with mTGase treatment in a concentration-dependent manner, but maleylated-glycinin did not.

Development of Giant Squid (Ommastrephes bartrami) Surimi-based Products with Gel Texture Enhancers and the Effects of Setting on Gel Quality (겔 강화제를 첨가한 대왕오징어 어묵 개발 및 이의 품질에 대한 Setting의 영향)

  • Choi, Seung-Hwa;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.975-981
    • /
    • 2012
  • Setting is an important process for the control of surimi quality in industry because it can improve the gel texture and water-holding capacity of surimi-based products. Therefore, the effect of setting on giant squid surimi-based product was analyzed via a mixture model. Konjac flour and microbial transglutaminase were used as texture enhancers. Both texture enhancers improved the texture and water retention ability (WRA) of giant squid surimi-based products, while decreasing the whiteness. Setting also improved the gel texture and WRA, while having no effect on the whiteness. Based on the sensory evaluation, the product with gel texture enhancers was better than the control and similar to commercial surimi products. Therefore, the applications of gel texture enhancers and setting are very important for the manufacture of giant squid surimi-based products.

Electron Microscopical Characteristics of Transglutaminase-treated Raw Skim Milk After pH Adjustment (pH조정후 트랜스글루타미나제로 처리한 탈지 원유의 전자현미경적 특성)

  • Moon, Jeong-Han;Hong, Youn-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1638-1641
    • /
    • 2005
  • In order to develop novel food products or additives using transglutaminase (TGase), some physicochemical and morphological understandings are needed. Raw skim milk was adjusted to pH 5.5, 7.0, and 8.5, and each was treated with microbial TGase for 0, 1, 2, 4, and 8 hours, for the protein structure observation using scanning electron microscope (SEM), The particles of untreated raw skim milk were small and evenly associated. After adjustment of pH to 5.5 and treatment of TGase for 1-hour, the protein particles aggregated widely in a bigger form than that of control. Under the same condition for 2 hours, the particles associated and clustered. The particles gathered widely and became a number of small spherical forms after 4 hours. After 8 hours, they made larger forms than the result of 1-hour treatment, and the aggregation broadened. Under the pH 7.0 and 8.5 conditions with TGase-treatment, the protein Particles fractionated and associated into the bigger masses at 1 hour point, but each piece slowly became smaller and more fractionated until treated time reached 4 hours. After 8 hours, the fragmented protein particles aggregated into larger forms as those on the pH 5.5 condition. In general, the electron microscopical forms of the samples adjusted to pH 5.5 showed smaller than those of pH 7.0 or pH 8.5, It is suggested that the protein particles and textural behavior were influenced by pH, TGase, and reaction time.

Electron Microscopical Property of Transglutaminase Added Milk (트랜스글루타미나제를 첨가한 우유의 전자현미경적 특성)

  • 문정한;홍윤호
    • Food Science of Animal Resources
    • /
    • v.23 no.4
    • /
    • pp.350-355
    • /
    • 2003
  • Raw skim milk and colloidal calcium phosphate-free skim milk were treated with microbial transglutaminase (TGase), ultracentrifuged at varying rates and were observed to contain textural properties using a scanning electron microscope (SEM). Skim milk showed irregular signs of conformation at lower centrifugal rate, and associated regular (10,000 ${\times}$g) and thin with broad holes (20,000 ${\times}$g). The associated texture became thick and irregular (40,000 ${\times}$g), and fine particles were regularly associated (100,000 ${\times}$g). When skim milk was incubated for 1 hr with TGase, casein micelles aggregated and broadened as centrifugation rate increased. When skim milk was incubated for 8 hrs with TGase, casein micelles associated to large widened aggregates, and were associated regularly which then became irregular (100,000 ${\times}$g). When colloidal calcium phosphate-free skim milk incubated for 1 hr with TGase showed no sediment, the milk incubated for 8 hrs with TGase associated together, yielding broadened and regular layers as the centrifugation rate increased. It is assumed that such phenomena could be caused by protein crosslinking reaction with TGase and conformational change of casein molecules, as well as dependencies on reaction time, temperature and ultracentrifugation rate.

Quality and Storage Characteristics of Chicken Patties with Added Shell Calcium and Transglutaminase to Reduce Sodium Intake (나트륨 섭취 경감을 위해 패각칼슘과 트랜스글루타미나아제를 첨가한 닭고기 패티의 품질 및 저장 특성)

  • Youngho Lim;Gyutae Park;Kisu Ahn;Jungseok Choi
    • Korean Journal of Poultry Science
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • To reduce salt content and enhance calcium in chicken patty, shell calcium powder (SCP) was added, and transglutaminase (TG) was included to improve its properties. Five different treatments were prepared to assess the effects: CON (2% salt), T1 (0.75% salt + 0.2% SCP), T2 (0.75% salt + 0.2% SCP + 0.2% TG), T3 (0.5% salt + 0.4% SCP), and T4 (0.5% salt + 0.4% SCP + 0.2% TG). Reducing salt led to decreased ash content and increased cooking loss. The addition of SCP and TG raised pH levels. Meat color remained consistent with different salt, SCP, and TG levels. However, when salt was reduced to 0.5% and SCP was added at 0.4% without TG, the patty's hardness and chewiness decreased. Sensory evaluations showed reduced juiciness when salt was reduced to 0.5% and SCP was added at 0.4%, but no significant differences were observed in overall acceptability. Salt had no impact on TBARS results, but salt reduction to below 0.5% increased susceptibility to microbial contamination. In summary, reducing salt and adding SCP had minimal sensory impact, but when salt is reduced to 0.5% or lower, consider adding TG. Also, when decreasing salt, additional preservatives should be considered to address potential microbial contamination during manufacturing.

Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties

  • Wang, Shiting;Yang, Zhigang;Li, Zhenjiang;Tian, Yongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1082-1091
    • /
    • 2020
  • Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50℃ and 8.0, respectively. MTG activity increased 1.42-fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8℃. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.