• Title/Summary/Keyword: Microbial transglutaminase

Search Result 50, Processing Time 0.029 seconds

The Effect of Microbial Transglutaminase on Textural and Sensory Properties of Noodles Mixed with Rice Flour (미생물유래 Transglutaminase 첨가가 쌀가루 혼합분 반죽과 조리면의 조직감 및 관능특성에 미치는 영향)

  • Shin, Weon-Sun;Seo, Hee-Sun;Woo, Gun-Jo;Jeong, Yong-Seob
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.9
    • /
    • pp.1434-1442
    • /
    • 2005
  • The Present study was attempted to investigate the Possibility of modification of functional properties of the rice flour by crosslinking proteins using microbial transglutaminase (mTGase) derived from a variant of Streptoverticillium sp. MTGase was added at various levels (3,000, 5,000, 7,000 and 10,000 ppm) during making noodles mixed with the rice flour. Mixograph and farinograph showed that imported wheat flour (IWF) had strong dough stability, while the rice flour showed very weak dough strength. However addition of mTGase (3,000, 5,000 and 7,000 ppm) resulted in improvement of dough stability of the rice flour. Texture profile analysis (TPA) results indicated that most of texture parameters (gumminess, chewiness and hardness) of cooked noodles prepared from the rice flour were significantly lower than those of noodles prepared from IWF. However, by addition of mTGase (at the levels of 3,000, 5,000, 7,000 ppm) dough stability and all the TPA values and sensory score (at the level of 7,000 ppm mTGase) on chewiness and hardness of cooked noodles made with $30\%$ rice flour were improved significantly. These results suggest that dough stability and texture of rice noodles as well as sensory characteristics could be improved by addition of mTGase to the rice flour.

Optimisation of Calcium Alginate and Microbial Transglutaminase Systems to form a Porcine Myofibrillar Protein Gel

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.590-598
    • /
    • 2009
  • The aim of this study was to model and optimize the calcium alginate (CA) and microbial transglutaminase (TG) systems to form a cold-set myofibrillar protein (MP) gel containing 0.1 M or 0.3 M NaCl using a response surface methodology. The gel strengths of cold-set and heat-induced MP gels, and cooking yields were measured. All measured parameters showed determination coefficients ($R^2$) above 0.7 without a lack-of-fit. The CA system had the best results with component ratios of 1.0:0.3:1.0 corresponding to sodium alginate, calcium carbonate and glucono-$\delta$-lactone, respectively, and was favourable at 0.1 M NaCl. In contrast, the TG system only had an effect on cold-set MP gelation at 0.3 M salt, and the optimal ratio of TG to sodium caseinate was 0.6:0.5. By combining the two systems at 0.3 M NaCl, an acceptable cold-set MP gel with an improved texture and high cooking yield could be formed. Therefore, these results indicated that the functionality of the cold-set MP gel could be enhanced by combining these two optimized gelling system.

Effect of NaCl, Gum Arabic and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar Proteins

  • Davaatseren, Munkhtugs;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.808-814
    • /
    • 2014
  • This study investigated the effect of gum arabic (GA) combined with microbial transglutaminase (TG) on the functional properties of porcine myofibrillar protein (MP). As an indicator of functional property, heat-set gel and emulsion characteristics of MP treated with GA and/or TG were explored under varying NaCl concentrations (0.1-0.6 M). The GA improved thermal gelling ability of MP during thermal processing and after cooling, and concomitantly added TG assisted the formation of viscoelastic MP gel formation. Meanwhile, the addition of GA decreased cooking yield of MP gel at 0.6 M NaCl concentration, and the yield was further decreased by TG addition, mainly attributed by enhancement of protein-protein interactions. Emulsion characteristics indicated that GA had emulsifying ability and the addition of GA increased the emulsification activity index (EAI) of MP-stabilized emulsion. However, GA showed a negative effect on emulsion stability, particularly great drop in the emulsion stability index (ESI) was found in GA treatment at 0.6 M NaCl. Consequently, the results indicated that GA had a potential advantage to form a viscoelastic MP gel. For the practical aspect, the application of GA in meat processing had to be limited to the purposes of texture enhancer such as restructured products, but not low-salt products and emulsion-type meat products.

Inconsistency in the Improvements of Gel Strength in Chicken and Pork Sausages Induced by Microbial Transglutaminase

  • Kawahara, S.;Ahhmed, A.M.;Ohta, K.;Nakade, K.;Muguruma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1285-1291
    • /
    • 2007
  • This research investigated variation in the improvement of the texture of chicken and pork sausages induced by microbial transglutaminase (MTG). The extractability of myofibrillar proteins from these sausages as well as the ${\varepsilon}-({\gamma}-glutamyl)$lysine (G-L) content were also investigated. MTG treatment of sausages significantly increased the breaking strength values in both meat types, especially for samples incubated at $40^{\circ}C$. However, values of the breaking strength in both meat types were increased differently. The variation in protein extractability of samples incubated at $40^{\circ}C$ for both meat types could lead to some consideration of the mechanisms and the high accessions of myosin heavy chain (MHC) to MTG. SDS-PAGE analysis showed significant changes in the density of the bands after adding MTG, especially for the pork samples in which the bands disappeared totally. The G-L content in the presence of MTG was double that in control samples of both meat types. This study suggests that the binding ability of myofibrillar proteins with MTG is strong. This leads us to suggest that MTG functions positively with different improvements in the texture of chicken and pork products that are treated mechanically, such as sausages. Variability in gel improvement level between chicken and pork sausages was observed; this resulted from the variation in meat proteins in response to MTG, as well as to the original glutamyl and lysine content.

Microbial Transglutaminase Modifies Gel Properties of Porcine Collagen

  • Erwanto, Y.;Kawahara, S.;Katayama, K.;Takenoyama, S.;Fujino, H.;Yamauchi, K.;Morishita, T.;Kai, Y.;Watanabe, S.;Muguruma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.269-276
    • /
    • 2003
  • We studied the gel properties of porcine collagen with microbial transglutaminase (MTGase) as a catalyst. A creep meter was used to measure the mechanical properties of gel. The results showed samples with high concentration of MTGase gelled faster than those with a low concentration of MTGase. The gel strength increased with incubation time and the peaks of breaking strength for 0.1, 0.2 and 0.5% MTGase were obtained at 40, 20 and 10 min incubation time, respectively. According to SDS-PAGE, the MTGase was successfully created a collagen polymer with an increase in molecular weight, whereas no change in formation was shown without MTGase. The sample with 0.5% MTGase began to polymerize after 10 or 20 min incubation at $50^{\circ}C$, and complete polymerization occurred after 40-60 min incubation. Scanning electron microscopic analysis revealed that the gel of porcine collagen in the presence of MTGase produced an extremely well cross-linked network. The differential scanning calorimetric analysis showed the peak thermal transition of porcine collagen gel was at $36^{\circ}C$, and that with MTGase no peak was detected during heating from 20 to $120^{\circ}C$. The melting point of porcine collagen gel could be controlled by MTGase concentration, incubation temperature and protein concentration. Knowledge of the structural and physicochemical properties of porcine collagen gel catalyzed with MTGase could facilitate their use in food products.

Evaluation of Porcine Myofibrillar Protein Gel Functionality as Affected by Microbial Transglutaminase and Red Bean [Vignia angularis] Protein Isolate at Various pH Values

  • Jang, Ho Sik;Lee, Hong Chul;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.841-846
    • /
    • 2015
  • This study was investigated to determine the effect of microbial transglutaminase (MTG) with or without red bean protein isolate (RBPI) on the porcine myofibrillar protein (MP) gel functionality at different pH values (pH 5.75-6.5). Cooking yield (CY, %), gel strength (GS, gf), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were determined to measure gel characteristics. Since no differences were observed the interaction between 1% RBPI and pH, data were pooled. CY increased with the addition of 1% RBPI, while it was not affected by pH values. GS increased with increased pH and increased when 1% RBPI was added, regardless of pH. There were distinctive endothermic protein peaks, at 56.55 and 75.02℃ at pH 5.75, and 56.47 and 72.43℃ at pH 6.5 in DSC results, which revealed decreased temperature of the first peak with the addition of 1% RBPI and increased pH. In SEM, a more compact structure with fewer voids was shown with the addition of 1% RBPI and increased pH from 5.75 to 6.5. In addition, the three-dimensional structure was highly dense and hard at pH 6.5 when RBPI was added. These results indicated that the addition of 1% RBPI at pH 6.5 in MTG-mediated MP represent the optimum condition to attain maximum gel-formation and protein gel functionality.

Evaluation of Acid-treated Fish Sarcoplasmic Proteins on Physicochemical and Rheological Characteristics of Pork Myofibrillar Protein Gel Mediated by Microbial Transglutaminase

  • Hemung, Bung-Orn;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • Fish sarcoplasmic protein (SP) is currently dumped as waste from surimi industry and its recovery by practical method for being the non-meat ingredient in meat industry would be a strategy to utilize effectively the fish resource. This study was aimed to apply pH treatment for fish SP recovery and evaluated its effect on pork myofibrillar protein (MP) gel. The pH values of fish SP were changed to 3 and 12, and neutralized to pH 7 before lyophilizing the precipitated protein after centrifugation. Acid-treated fish SP (AFSP) showed about 4-fold higher recovery yield than that of alkaline-treated SP and water absorption capacity was also about 1.2-fold greater. Because of the high recovery yield and water absorption capacity, AFSP was selected to incorporate into MP with/without microbial transglutaminase (MTG). The effects of AFSP and MTG on the physicochemical and rheological characteristics of MP and MP gel were evaluated. MTG induced an increase shear stress of the MP mixture and increase the breaking force of MP gels. MP gel lightness was decreased by adding AFSP. MP gel with MTG showed higher cooking loss than that without MTG. A reduction of cooking loss was observed when the AFSP was added along with MTG, where the insoluble particles were found. Therefore, AFSP could be contributed as a water holding agent in meat protein gel.

Quality of steak restructured from beef trimmings containing microbial transglutaminase and impacted by freezing and grading by fat level

  • Sorapukdee, Supaluk;Tangwatcharin, Pussadee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.129-137
    • /
    • 2018
  • Objective: The objective of this research was to evaluate the physico-chemical, microbiological and sensorial qualities of restructured steaks processed from beef trimmings (grade I and II) and frozen beef (fresh beef as control and frozen beef). Methods: Beef trimmings from commercial butcher were collected, designated into 4 treatments differing in beef trimmings grade and freezing, processed into restructured steaks with 1% microbial transglutaminase and then analyzed for product quality. Results: The results showed that all meat from different groups could be tightly bound together via cross-linking of myosin heavy chain and actin as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Microbial counts of psychrotrophic and mesophilic bacteria were not affected by treatments (p>0.05), and no detectable of thermophilic bacteria were found. Regarding effect of beef trimmings grade, steaks made from beef trimmings grade II (16.03% fat) showed some superior sensorial qualities including higher tenderness score (p<0.05) and tendency for higher scores of juiciness and overall acceptability (p<0.07) than those made from beef trimmings grade I (2.15% fat). Moreover, a hardness value from texture profile analysis was lower in steaks processed from beef trimmings grade II than those made from grade I (p<0.05). Although some inferior qualities in terms of cooking loss and discoloration after cooking were higher in steaks made from beef trimmings grade II than those made from beef trimmings grade I (p<0.05), these differences did not affect the sensory evaluation. Frozen beef improved the soft texture and resulted in effective meat binding as considered by higher cohesiveness and springiness of the raw restructured product as compared to fresh beef (p<0.05). Conclusion: The results indicated the most suitable raw beef for producing restructured steaks without detrimental effect on product quality was beef trimmings grade II containing up to 17% fat which positively affected the sensory quality and that frozen beef trimmings increased tenderness and meat binding of restructured beef steaks.

Effect of Heating on Polymerization of Pig Skin Collagen Using Microbial Transglutaminase

  • Erwanto, Yuny;Muguruma, Michio;Kawahara, Satoshi;Tsutsumi, Takahiko;Katayama, Kazunori;Yamauchi, Kiyoshi;Morishita, Toshiro;Morishita, Toshiro;Watanabe, Shohei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1204-1209
    • /
    • 2002
  • Polymerization of heated or unheated pig skin collagen using microbial transglutaminase (MTGase) was investigated. Pig skin collagen samples were heated or left unheated, then enzymatically polymerized with MTGase. SDS-PAGE was conducted to confirm the intermolecular polymer and the results showed similar bands between samples without MTGase and unheated samples with MTGase. The polymerized product of pig skin collagen was not formed in unheated samples, even when MTGase was added during incubation. Different results were obtained from samples heated at $80^{\circ}C$ and $100^{\circ}C$ for 2 min, whereas the SDS-PAGE pattern indicated that a polymer band was generated in both cases. The heat treatment successfully modified the native structure of collagen and also made collagen more reactable in the MTGase polymerization system. Scanning Electron Microscope (SEM) investigation of pig skin collagen showed a biopolymer structure through intermolecular collagen crosslinking, while there were no intermolecular crosslinks in samples not treated with MTGase. There were no significant differences in fibril diameter between treated samples and controls. These results suggest that heat treatment of native pig skin collagen enhanced the polymerization capability of MTGase.

Effect of Faba Bean Isolate and Microbial Transglutaminase on Rheological Properties of Pork Myofibrillar Protein Gel and Physicochemical and Textural Properties of Reduced-Salt, Low-Fat Pork Model Sausages

  • Geon Ho Kim;Koo Bok Chin
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.586-606
    • /
    • 2024
  • The study was performed to determine the effect of faba bean protein isolate (FBPI) alone or in combination with microbial transglutaminase (MTG) on the rheological properties of pork myofibrillar protein gel (MPG), and physiochemical and textural properties of reduced-salt, low-fat pork model sausages (LFMSs). The cooking yields of MPGs with MTG or FBPI alone decreased and increased, respectively. However, the combination of FBPI and MTG was similar to the control (CTL) without FBPI or MTG. Gel strength values of MPG added with both FBPI and MTG were higher than treatments with FBPI or MTG alone. The hydrophobicity values of CTL were lower than those of MPG with FBPI alone, whereas the addition of MTG decreased the hydrophobicity of MPGs. The incorporation of FBPI alone or in combination with MTG decreased sulfhydryl groups (p<0.05). Shear stress values of MPGs with MTG tended to be higher than those of non-MTG treatments at all shear rates, and the addition of FBPI into MPGs increased shear stress values. Reduced-salt (1.0%) LFMSs with FBPI alone or combined with MTG had both lower cooking loss and expressible moisture values than those of CTL and similar values to the reference sample (REF, 1.5% salt). Textural properties of reduced-salt LFMSs with FBPI or MTG were similar to those of REF. These results demonstrated that the combination of FBPI and MTG could improve the water binding capacity and textural properties of pork MPGs and LFMSs and might be suitable for application in the development of healthier meat products.