• Title/Summary/Keyword: Microbial survival

Search Result 118, Processing Time 0.028 seconds

Plumbagin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori (Plumbagin에 의한 헬리코박터 파이로리균의 성장 및 병원성 인자 발현 억제효과)

  • Lee, Min Ho;Woo, Hyun Jun;Park, Min;Moon, Cheol;Eom, Yong-Bin;Kim, Sa-Hyun;Kim, Jong-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.218-226
    • /
    • 2016
  • Helicobacter pylori primarily colonizes the human stomach. Infection by this bacterium is associated with various gastric diseases, including inflammation, peptic ulcer, and gastric cancer. Although there are antibiotic regimens for the eradication of H. pylori, the resistance of this species against antibiotics has been continuously increasing. The natural compound plumbagin has been reported as an antimicrobial and anticancer molecule. In this study, we analyzed the inhibitory effect of plumbagin on H. pylori strain ATCC 49503 as well as the expression of various molecules associated with H. pylori growth or virulence by immunoblotting and reverse transcription polymerase chain reaction (RT-PCR) analyses. We demonstrated the minimal inhibitory concentration of plumbagin on H. pylori through the agar dilution and broth dilution methods. Furthermore, we investigated the effect of plumbagin treatment on the expression of the RNA polymerase subunits and various virulence factors of H. pylori. Plumbagin treatment decreased the expression of RNA polymerase subunit alpha (rpoA), which is closely associated with bacterial survival. Moreover, the mRNA and protein levels of the major CagA and VacA toxins were decreased in plumbagintreated H. pylori cells. Likewise, the expression levels of urease subunit alpha (ureA) and an adhesin (alpA) were decreased by plumbagin treatment. Collectively, these results suggest that plumbagin may inhibit the growth, colonization, and pathogenesis of H. pylori by the mechanism demonstrated in this study.

Sterilization of Yakju(Rice Wine) Using a Batch-type High Voltage Pulsed Electric Field System (고전장펄스를 이용한 약주의 회분식 살균)

  • Kim, Su-Yeon;Park, Young-Seo;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1247-1253
    • /
    • 1999
  • Yakju(rice wine) was sterilized with high-voltage pulses of short time on a batch pulsed electric field(PEF) system. The initial microbial counts of Yakju were 7.52 X $10^4\;CFU/mL$ for total aerobes, 2.20 X $10^4\;CFU/mL$ for lactic acid bacteria and 7.08 X $10^4\;CFU/mL$ for yeasts. The pH, acidity and electric conductivity of Yakju were 3.36, 0.462% and 1.24 mS/cm, respectively. Yakju was treated with 2-250 of pulses exponential-wave formed electric pulses under the field strength of 12.5-25 kV/cm. The critical strengths of the electrical field for the sterilization of Yakju were 7.5 kV/cm for total aerobes, 8.5 kV/cm for lactic acid bacteria and 6.5 kV/cm for yeasts. Logarithmic survival rates decreased linearly at low pulse number, but curvilinearly at high pulse number. The PEF sterilization kinetics of Yakju could be analysed by In s = In A-k In (n) and the sterilization rate constant increased with electric field strength and the size of target microorganisms. No changed in pH, acidity, and the growth of microorganisms were found in the PEF treated Yakju during the storage for 6 weeks at both $4^{\circ}C$ And $30^{\circ}C$.

  • PDF

Effect of Green Tea Powder on the Growth Inhibition of Oral Bacteria in Yoghurt (가루녹차 첨가 요구르트에 의한 충치 원인균 증식 억제 효과)

  • Jung Da-Wa;Park Shin-In
    • Food Science of Animal Resources
    • /
    • v.25 no.4
    • /
    • pp.500-506
    • /
    • 2005
  • This study was carried out to obtain knowledges on the survival of Streptococcus mutans in the yoghurt added with green tea powder. The growth inhibition of green tea powder on the food borne pathogens and oral bacteria was measured by total microbial count, Among the tested food borne pathogens, the growth of Staphylococcus aureus and Salmonella enteritidis were not significantly affected by the addition of green tea powder, but green tea powder showed the growth inhibition effect on Escherichia coli O157:H7. The number of surviving Streptococcus mutans cell was decreased by $0.56\~0.99log$ cycle after 24 hem incubation by the addition of $0.5\~2.5\%$ green tea powder in the medium. And also the viable cell count of surviving Streptococcus mutans cells (initial inoculum $3.4\times10^7CFU/mL$) were decreased to $1.4\times10^4\~7.2\times10^4 CFU/mL$ after 48 hours incubation when $0.5\~2.5\%$ green tea powder were added to the drinkable yoghurt, Growth of Streptococcus mutans was strongly inhibited by the addition and incubation of green tea powder for 48 hum in the yoghurt.

Impact of Pollution Sources on the Bacteriological Water Quality in the Yongnam-Gwangdo Shellfish Growing Area of Western Jinhae Bay, Korea (진해만 서부 용남·광도해역의 세균학적 수질에 미치는 육상 오염원의 영향)

  • Shim, Kil Bo;Ha, Kwang Soo;Yoo, Hyun Duk;Lee, Tae Seek;Kim, Ji Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.561-569
    • /
    • 2012
  • To evaluate the bacteriological water quality in Yongnam-Gwangdo, located in western Jinhae Bay, seawater samples were analyzed using sanitary indicator bacteria at 57 sampling stations. According to survey results from January 2007 to December 2009, the range of the geometric mean and the estimated 90th percentile for coliforms and fecal coliforms in the samples were <1.8-16.5 and 1.8-246.8 MPN/100 mL and <1.8-7.1 and 1.8-74.8 MPN/100 mL, respectively. The samples, including those taken from stations located in Wonmunman, Gwangdo, and Dangdong, showed high levels of microbial contamination caused by the climate and weather patterns in the marine environment. The bacteriological water quality in the area met Korean criteria for a designated shellfish growing area for export and National Shellfish Sanitation Program criteria for an approved shellfish growing area, except at station #49. A total of 24 direct pollution sources were discharged into the shellfish growing area. The radius of impact was calculated for each pollution source to assess the effect on the shellfish growing area. The calculated radius of impact for most of the pollution sources was below 300 m. However, the radius of impact for the combined pollution sources in Kyeonnaeryang was 93-1973 m. There were significant differences between the calculated closed sea area and actual monitoring results. The closed sea area values calculated from the fecal coliform load in drainage water tended to be higher than the actual monitoring results. Tidal currents and environmental factors such as salinity, water temperature, sunlight, and microbiological factors affect the survival of fecal indicator bacteria in seawater.

Preparation of Squid-Jeotkal with Pasteurized Red Pepper I. Pasteurization of Red Pepper Powder by Ohmic Heating (살균고춧가루를 이용한 오징어젓갈 제조 I. Ohmic heating에 의한 고춧가루 살균)

  • 이현숙;이원동;고병호;이명숙
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.1
    • /
    • pp.13-17
    • /
    • 2000
  • The low salt seasoned jeotkal, salted and fermented fisheries product, may has some problems, such as short shelf-life, its putrefaction by mixing some microorganism from additives. It was considered that most microorganism in seasoned jeotkal were introduced from red pepper powder. Therefore, it is important to pasteurize red pepper powder for improving its microbial quality. When red pepper powder was pasteurized by ohmic heating, the survival cell concentration in red pepper powder was reduced to 1-log-unit at 500 V/m, 700 V/m, above 8$0^{\circ}C$. But viable cell counts were reduced from 8.5$\times$10$^{6}$ CFU/g to 2.1 $\times$ 10$^2$CFU/g, i.e. 4.6-log-unit, during ohmic heating at 9$0^{\circ}C$ for 40 min. Color values of red pepper powder during ohmic heating with different holding time were not changed significantly. When squid-jeotkal was manufactured by using the pasteurized red pepper powder, viable cell counts of the product were decreased by about three log cycles, compare with control product. And also the counts of fungi were significantly decreased.

  • PDF

Continuously Recycling Sterilization of Yakju(Rice Wine) Using Pulsed Electric Fields (고전장펄스를 이용한 약주의 연속 재순환 살균)

  • Kim, Su-Yeon;Mok, Chul-Kyoon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.410-415
    • /
    • 1999
  • Yakju was sterilized with high-voltage pulses of short time of a continuous pulsed electric field (PEF) system. The initial microbial counts of Yakju were $2.2{\times}10^{5}$ CFU/mL for total aerobes. The pH, acidity and electric conductivity of Yakju were 3.82, 0.37% and 1.24 mS/cm, respectively. Yakju was treated with exponential-wave formed electric pulses of 100 Hz for $0{\sim}4000{\mu}s$ under the field strength of $20{\sim}35\;kV/cm$. The lethal effect of electric fields on microorganisms was resulted from the breakdown of the cell membrane induced by the transmembrane electric potential. The critical values of the external field for the sterilization were 16.0 kV/cm for total aerobes. Logarithmic survival rates decreased linearly at low electric field strength, but curvilinearly at high electric field strength with treatment time. The sterilization of Yakju was more largely affected by the electric field strength than by the treatment time. Any changes in pH, acidity, and the growth of microorganisms were not found in the PEF treated Yakju during the storage at both $4^{\circ}C\;and\;30^{\circ}C$.

  • PDF

Quorum-Sensing Mechanisms in Bacterial Communities and Their Potential Applications (세균의 의사 소통(Quorum-Sensing) 기구와 그 잠재적 응용성)

  • Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2006
  • Although microorganisms are, in fact, the most diverse and abundant type of organism on Earth, the ecological functions of microbial populations remains poorly understood. A variety of bacteria including marine Vibrios encounter numerous ecological challenges, such as UV light, predation, competition, and seasonal variations in seawater including pH, salinity, nutrient levels, temperature and so forth. In order to survive and proliferate under variable conditions, they have to develop elaborate means of communication to meet the challenges to which they are exposed. In bacteria, a range of biological functions have recently been found to be regulated by a population density-dependent cell-cell signaling mechanism known as quorum-sensing (QS). In other words, bacterial cells sense population density by monitoring the presence of self-produced extracellular autoinducers (AI). N-acylhomoserine lactone (AHL)-dependent quorum-sensing was first discovered in two luminescent marine bacteria, Vibrio fischeri and Vibrio harveyi. The LuxI/R system of V. fischeriis the paradigm of Gram-negative quorum-sensing systems. At high population density, the accumulated signalstrigger the expression of target genes and thereby initiate a new set of biological activities. Several QS systems have been identified so far. Among them, an AHL-dependent QS system has been found to control biofilm formation in several bacterial species, including Pseudomonas aeruginosa, Aeromonas hydrophila, Burkholderia cepacia, and Serratia liquefaciens. Bacterial biofilm is a structured community of bacterial cells enclosed in a self-produced polymeric matrix that adheres to an inert or living surface. Extracellular signal molecules have been implicated in biofilm formation. Agrobacterium tumefaciens strain NT1(traR, tra::lacZ749) and Chromobacterium violaceum strain CV026 are used as biosensors to detect AHL signals. Quorum sensing in lactic acid bacteria involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular regulator. In the nisin autoregulation process in Lactococcus lactis, the NisK protein acts as the sensor for nisin, and NisR protein as the response regulator activatingthe transcription of target genes. For control over growth and survival in bacterial communities, various strategies need to be developed by which receptors of the signal molecules are interfered with or the synthesis and release of the molecules is controlled. However, much is still unknown about the metabolic processes involved in such signal transduction and whether or not various foods and food ingredients may affect communication between spoilage or pathogenic bacteria. In five to ten years, we will be able to discover new signal molecules, some of which may have applications in food preservation to inhibit the growth of pathogens on foods.

Death of Non-growing Microbial Cells in Saline (식염용액에서 휴지(休止) 미생물 세포의 사멸)

  • Kang, Young-Mi;Kyung, Kyu-Hang;Park, Se-Won;Yoo, Yang-Ja;Kim, Youn-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.660-664
    • /
    • 1998
  • Death of non-growing microorganisms in saline was studied to observe the inhibitory effect of NaCl in foods on the viability of microorganisms. When Leuconostoc mesenteroides LA10, Staphylococcus aureus B31 and Escherichia coli B34 were incubated in McIlvaine buffer with 0, 10, 20, 30% NaCl at $30^{\circ}C$, they survived best at pH 6, 5, 7, respectively. The survival of 5 lactic acid bacteria, 9 other bacteria and 2 yeasts was tested at pH 5, 6, 7 with 10% NaCl. Gram-positive bacteria survived in saline better than Gram-negative bacteria, and lactic acid bacteria and S. aureus survived better than other bacteria. The number of survivors decreased as concentrations of NaCl increased and as pH moved to acidic or alkaline side from the above-mentioned. When L. mesenteroides LA10 was incubated in saline with those materials which are known to protect microorganisms from the killing effect of NaCl, protective effect was not observed.

  • PDF

Changes in Oral Microbiota in Patients Receiving Radical Concurrent Chemoradiotherapy for The Head and Neck Squamous Cell Carcinoma

  • Kim, Jin Ho;Choi, Yoon Hee;An, Soo-Youn;Son, Hee Young;Choi, Chulwon;Kim, Seyeon;Chung, Jin;Na, Hee Sam
    • International Journal of Oral Biology
    • /
    • v.43 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • Radiotherapy (RT) is a mainstay in the treatment of head and neck squamous cell carcinoma (HNSCC). For locally advanced HCSCC, concurrent chemoradiotherapy (CCRT) benefits HCSCC patients in terms of better survival and loco-regional control. In this study, we evaluated changes in oral microbiota in patients, who received CCRT for head and neck cancer. Oral rinsed samples were weekly collected before and during CCRT and at 4 weeks following treatment from HNSCC patients, who had received 70 Gy of radiation delivered to the primary sites for over 7 weeks and concurrent chemotherapy. Oral microbiota changes in three patients were analyzed by next-generation sequencing using 16S rRNA 454 pyrosequencing. On an average, 15,000 partial 16S rRNA gene sequences were obtained from each sample. All sequences fell into 11 different bacterial phyla. During early CCRT, the microbial diversity gradually decreased. In a patient, who did not receive any antibiotics during the CCRT, Firmicutes and Proteobacteria were the most abundant phylum. During the early CCRT, proteobacteria gradually decreased while Firmicutes increased. During the late CCRT, firmicutes gradually decreased while Bacteroides and Fusobacteria increased. In all the patients, yellow complex showed a gradual decrease, while orange and red complex showed a gradual increase during the CCRT. At 4 weeks after CCRT, the recovery of oral microbiota diversity was limited. During CCRT, there was a gradual increase in major periodontopathogens in association with the deterioration of the oral hygiene. Henceforth, it is proposed that understanding oral microbiota shift should provide better information for the development of effective oral care programs for patients receiving CCRT for HNSCC.

Lactobacillus plantarum APsulloc 331261 Fermented Products as Potential Skin Microbial Modulation Cosmetic Ingredients (Lactobacillus plantarum APsulloc 331261 발효 용해물의 피부 미생물 조절 효과)

  • Kim, Hanbyul;Myoung, Kilsun;Lee, Hyun Gee;Choi, Eun-Jeong;Park, Taehun;An, Susun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The skin is colonized by a large number of microorganisms with a stable composition of species. However, disease states of skin such as acne vulgaris, psoriasis, and atopic dermatitis have specific microbiome compositions that are different from those of healthy skin. The target modulation of the skin microbiome can be a potential treatment for these skin diseases. Quorum sensing (QS), a bacterial cell-cell communication system, can control the survival of bacteria and increase cell density. Also, QS affects the pathogenicity of bacteria such as biofilm formation and protease production. In this study, we confirmed anti-QS activity of Amorepacific patented ingredients, which are Lactobacillus ferment lysate (using Lactobacillus plantarum APsulloc 331261, KCCM 11179P) through bio-reporter bacterial strain Chromobacterium violaceum. The purple pigment production of C. violaceum controlled by QS was reduced 27.3% by adding 10 ㎍/mL of Lactobacillus ferment lysate (freeze dried). In addition, the Lactobacillus ferment lysate increased growth of Staphylococcus epidermidis 12% and decreased growth of Pseudomonas aeruginosa 38.5% and its biofilm formation 17.7% at a concentration of 10 ㎍/mL compared to the untreated control group. Moreover, S. epidermidis was co-cultured with the representative dermatological bacterium Staphylococcus aureus in the same genus, the growth of S. epidermidis was increased 134 % and the growth of S. aureus was decreased 13%. These results suggest that fermented lysate using Lactobacillus plantarum APsulloc 331261 may be useful as a cosmetic ingredient that can control the balance of skin microbiome.