• Title/Summary/Keyword: Microbial stability

Search Result 316, Processing Time 0.026 seconds

Microbiome-Linked Crosstalk in the Gastrointestinal Exposome towards Host Health and Disease

  • Moon, Yuseok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.19 no.4
    • /
    • pp.221-228
    • /
    • 2016
  • The gastrointestinal exposome represents the integration of all xenobiotic components and host-derived endogenous components affecting the host health, disease progression and ultimately clinical outcomes during the lifespan. The human gut microbiome as a dynamic exposome of commensalism continuously interacts with other exogenous exposome as well as host sentineling components including the immune and neuroendocrine circuit. The composition and diversity of the microbiome are established on the basis of the luminal environment (physical, chemical and biological exposome) and host surveillance at each part of the gastrointestinal lining. Whereas the chemical exposome derived from nutrients and other xenobiotics can influence the dynamics of microbiome community (the stability, diversity, or resilience), the microbiomes reciprocally alter the bioavailability and activities of the chemical exposome in the mucosa. In particular, xenobiotic metabolites by the gut microbial enzymes can be either beneficial or detrimental to the host health although xenobiotics can alter the composition and diversity of the gut microbiome. The integration of the mucosal crosstalk in the exposome determines the fate of microbiome community and host response to the etiologic factors of disease. Therefore, the network between microbiome and other mucosal exposome would provide new insights into the clinical intervention against the mucosal or systemic disorders via regulation of the gut-associated immunological, metabolic, or neuroendocrine system.

Phytase Production by Rhizopus microsporus var. microsporus Biofilm: Characterization of Enzymatic Activity After Spray Drying in Presence of Carbohydrates and Nonconventional Adjuvants

  • Sato, Vanessa Sayuri;Jorge, Joao Atilio;Oliveira, Wanderley Pereira;Souza, Claudia Regina Fernandes;Guimaraes, Luis Henrique Souza
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.177-187
    • /
    • 2014
  • Microbial phytases are enzymes with biotechnological interest for the feed industry. In this article, the effect of spray-drying conditions on the stability and activity of extracellular phytase produced by R. microsporus var. microsporus biofilm is described. The phytase was spray-dried in the presence of starch, corn meal (> $150{\mu}m$), soy bean meal (SB), corn meal (< $150{\mu}m$) (CM), and maltodextrin as drying adjuvants. The residual enzyme activity after drying ranged from 10.7% to 60.4%, with SB and CM standing out as stabilizing agents. Water concentration and residual enzyme activity were determined in obtained powders as a function of the drying condition. When exposed to different pH values, the SB and CM products were stable, with residual activity above 50% in the pH range from 4.5 to 8.5 for 60 min. The use of CM as drying adjuvant promoted the best retention of enzymatic activity compared with SB. Spray drying of the R. microsporus var. microsporus phytase using different drying adjuvants showed interesting results, being quite feasible with regards their biotechnological applications, especially for poultry diets.

Studies of the Microbial and Physical Properties of Oriental Style Dairy Product Kou Woan Lao with Probiotics

  • Su, Lieh-Chi;Lin, Chin-Wen;Chen, Ming-Ju
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.409-413
    • /
    • 2005
  • The objective of this research was to combine the physiological functionality of probiotics (Lactobacillus acidophilus and Bifidobacterium longum) and the milk-clotting activity of culture filtrate from lao-chao to develop a new dairy product which was different from the commercial yogurt. Rhizopus javanicus and Saccharomyces cerevisiae were chosen as a mold and yeast starter for production of culture filtrate. The study results indicated that both probiotic counts increased with incubation time and maintained $10^7$-$10^8$ CFU/ml after 6 h incubation with 10-30% culture filtrates. By contrast, samples with 40% culture filtrates inhibited the growth of L. acidophilus and B. longum. The more culture filtrates were added, the lower titratable acidities and higher pH values in Kou Woan Lao were detected after 36 h fermentation. No significant differences (p>0.05) were found for both L. acidophilus and B. longum, when grown in differing concentrations of skim milk powders. Storage results showed both L. acidophilus and B. longum exhibited excellent stability for 14 days at $4^{\circ}C$ in the Kou Woan Lao.

A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum

  • Lee, Sang-Hyun;Kwon, Min-A;Choi, Sunhwa;Kim, Sooah;Kim, Jungyeon;Shin, Yong-An;Kim, Kyoung Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1702-1708
    • /
    • 2015
  • We have developed a new shuttle plasmid, designated as pLK1-MCS that can replicate in both Clostridium acetobutylicum and Escherichia coli, by combining the pUB110 and pUC19 plasmids. Plasmid pLK1-MCS replicated more stably than previously reported plasmids containing either the pIM13 or the pAMβ1 replicon in the absence of antibiotic selective pressure. The transfer frequency of pLK1-MCS into C. acetobutylicum was similar to the transfer frequency of other shuttle plasmids. We complemented C. acetobutylicum ML1 (that does not produce solvents such as acetone, butanol, and ethanol owing to loss of the megaplasmid pSOL1 harboring the adhE1-ctfAB-adc operon) by introducing pLK1-MCS carrying the adhE1-ctfAB-adc operon into C. acetobutylicum ML1. The transformed cells were able to resume anaerobic solvent production, indicating that the new shuttle plasmid has the potential for practical use in microbial biotechnology.

Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties

  • Wang, Shiting;Yang, Zhigang;Li, Zhenjiang;Tian, Yongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1082-1091
    • /
    • 2020
  • Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50℃ and 8.0, respectively. MTG activity increased 1.42-fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8℃. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.

TREATMENT OF FOODWASTE AND POSPHORUS REMOVAL USING STRUVITE CRYSTALLIZATION IN HYBRID ANAEROBIC REACTOR WITH SAC MEDIA

  • Park, In-Chul;Kim, Dong-Su;Kim, Sung-Man;Lee, Jung-Jun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.129-132
    • /
    • 2001
  • The purpose of this research was to understand possibility of foodwaste treatment by hybrid anaerobic reactor(HAR). The Possibility of methane utility and applicability of hybrid reactor system using foodwaste as substrate was investigated. The maximum loading rate and optimized operational conditions were determined. Hybrid anaerobic reactor was filled with packing material 50% of its total volume between the tube and the outer surface. The packing material used was randomly packed open-pore synthesis activated ceramic(SAC) media as support media for microbial attachment, growth, and chemical stability protected bacteria from effect of organic acid accumulation. In this research, although foodwaste has high concentrations C $l^{[-10]}$ and S $O_{4}$$^{2-}$ concentration the possibility of foodwaste anaerobic treatment was when foodwaste is treated by anaerobic digestion, this study focused on the possibility using C $H_4$ gas made under the anaerobic treatment as an alternative energy source. Other objective of this research is to study struvite formation and crystal forms in anaerobic digester. HAR is used to investigate phosphate crystallization without the addition of chemicals.

  • PDF

Studies on the Control of Environmental Wastes by Means of Immobilized Biocatalysts (III) Preparation of Immobilized Biocatalyst to Ethanol Fermentation (Immobilized Biocatalysts를 이용한 환경성 폐기물질 억제에 관한 연구 (제3보) 알코올 발효를 위한 Immobilized Biocatalysts 제조)

  • 김성기
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.120-128
    • /
    • 1991
  • Saccharomyces cerevisiae was immobilized by incubating iron oxides with calcium alginate, and by polyacrylamide entrapment to use repeatedly for the conversion of glucose to ethanol. Magnetic and non-magnetic immobilized yeast and polyacrylamide immobilized yeast were compared with the native yeast a batch-fermentation of ethanol from glucose. Three kinds of immobilized yeast tended almost identically, having ethanol productivity as well as the final yield about the same to what was found for the native yeast. The long-term operational stability of three kinds of immobilized yeast were significant difference according as immobilized yeast activation or non-activation before ethanol fermentation. In the non-activation they lost their activity of fermentation rapidly in the beginning stage an slower at a later stage. On the other hand, in the activation with nutrient media, their activities were increased to some extent and stable in the later stage. The cell count of three kinds of immobilized yeast after activiation by incubating nutrient media, increased by a factor of about 45 to 48, whereas the fermenting capacity increased by a factor of 174 to 178. In the prearation of immobilized biocatalysts, magnetic matter does not seem to have any adverse affect on the properties of the microorganism. The immobilized biocatalysts by utilizing magnetic matter have some advantages, especially in application of viscous media or insoluble particle-containing media, for this work was linked with microbial utilization of environmental wastes and elimination of envirnmental pollutant.

  • PDF

Behavior of Organic Matter, Chlorine Residual and Disinfection By-Products (DBPs) Formation during UV Treatment of Wastewater Treatment Plant Effluents (하수처리장 방류수의 UV 처리시 유기물질, 잔류염소 및 소독부산물 생성 거동)

  • Han, Jihee;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.61-72
    • /
    • 2014
  • Study on effluent organic matter (EfOM) characteristic and removal efficiency is required, because EfOM is important in regard to the stability of effluents reuse, quality issues of artificial recharge and water conservation of aqueous system. UV technology is widely used in wastewater treatment. Many reports have been conducted on microbial disinfection and micro pollutant reduction with UV treatment. However, the study on EfOM with UV has limited because low/medium pressure UV lamp is not sufficient to affect refractory organics. The high intensity of pulsed UV would mineralize EfOM itself as well as change the characteristics of EfOM. Chlorine demand and DBPs formation is affected on the changed amounts and properties of EfOM. The objective of this study is to investigate the effect on EfOM, chlorine residual, and chlorinated DBPs formation with low pressure and pulsed UV treatment. The removal of organic matter through low pressure UV treatment is insignificant effect. Pulsed UV treatment effectively removes/transforms EfOM. As a result, the chlorine consumption is changed and chlorine DBPs formation is decreased. However, excessive UV treatment caused problems of increasing chlorine consumption and generating unknown by-products.

Characterization of Antimicrobial Substance Producing Lactococcus sp. HM58 Isolated from Gastrointestinal Track of Flounder

  • Jeong Hyun-Mi;Yum Do-Young;Lee Jung-Ki;Choi Mi-Young;Kim Jin-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • A lactic acid bacterium showing antimicrobial activity against fish pathogen was isolated from gastrointestinal tract of flounder for the purpose of use as an aquaculture probiotics. From the analysis of morphological and physiological characteristics, the isolated strain was named as Lactococcus sp. HM58. Antimicrobial substance (AMS) from Lactococcus sp. HM58 showed strong growth inhibitory activity against Streptococcus sp., which is a fish pathogenic bacterium. AMS was presumed a proteinaceous compound with stability in heat and wide pH range from 2 to 10. It was started to produce in exponential growth phase and was not produced any more in stationary phase. It showed comparatively broad antimicrobial spectrum against most of gram positive bacteria used for this study. About $84\%$ of Lactococcus sp. HM58 was able to survive in the artificial gastric juice though it was low to the extent in the artificial bile juice. In the sensitivity test for various antibiotics, this strain was highly sensitive for doxycycline, erythromycin, amoxicillin clavu1anic acid and ampicillin.

Production of biopharmaceuticals in transgenic plant cell suspension cultures (형질전환 식물세포배양을 이용한 바이오의약품 생산)

  • Kwon, Jun-Young;Cheon, Su-Hwan;Lee, Hye-Ran;Han, Ji-Yeon;Kim, Dong-Il
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.309-319
    • /
    • 2009
  • Transgenic plant cell cultures for the production of biopharmaceuticals including monoclonal antibodies, recombinant proteins have been regarded as an alternative platform in addition to traditional microbial fermentation and mammalian cell cultures. Plant-made pharmaceuticals (PMPs) have several advantages such as safety, cost-effectiveness, scalability and possibility of complex post-translational modifications. Increasing demand for the quantity and diversity of pharmaceutical proteins may accelerate the industrialization of PMP technology. Up to date, there is no plant-made recombinant protein approved by USFDA (Food and Drug Administration) for human therapeutic uses due to the technological bottlenecks of low expression level and slight differences in glycosylation. Regarding expression levels, it is possible to improve the productivity by using stronger promoter and optimizing culture processes. In terms of glycosylation, humanization has been attempted in many ways to reduce immune responses and to enhance the efficacy as well as stability. In this review article, all these respects of transgenic plant cell cultures were summarized. In addition, we also discuss the general characteristics of plant cell suspension cultures related with bioreactor design and operation to achieve high productivity in large scale which could be a key to successful commercialization of PMPs.