• Title/Summary/Keyword: Microbial removal

Search Result 456, Processing Time 0.022 seconds

Assessment of Adsorption Capacity of Mushroom Compost in AMD Treatment Systems (광산배수 자연정화시설 내 버섯퇴비의 중금속 흡착능력 평가)

  • Yong, Bo-Young;Cho, Dong-Wan;Jeong, Jin-Woong;Lim, Gil-Jae;Ji, Sang-Woo;Ahn, Joo-Sung;Song, Ho-Cheol
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Acid mine drainage (AMD) from abandoned mine sites typically has low pH and contains high level of various heavy metals, aggravating ground- and surface water qualities and neighboring environments. This study investigated removal of heavy metals in a biological treatment system, mainly focusing on the removal by adsorption on a substrate material. Bench-scale batch experiments were performed with a mushroom compost to evaluate the adsorption characteristics of heavy metals leached out from a mine tailing sample and the role of SRB in the overall removal process. In addition, adsorption experiments were perform using an artificial AMD sample containing $Cd^{2+}$, $Cu^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ to assess adsorption capacity of the mushroom compost. The results indicated Mn leached out from mine tailing was not subject to microbial stabilization or adsorption onto mushroom compost while microbially mediated stabilization played an important role in the removal of Zn. Fe leaching significantly increased in the presence of microbes as compared to autoclaved samples, and this was attributed to dissolution of Fe minerals in the mine tailing in a response to the depletion of $Fe^{3+}$ by iron reduction bacteria. Measurement of oxidation reduction potential (ORP) and pH indicated the reactive mixture maintained reducing condition and moderate pH during the reaction. The results of the adsorption experiments involving artificial AMD sample indicated adsorption removal efficiency was greater than 90% at pH 6 condition, but it decreased at pH 3 condition.

The Characteristics of Microbial Population Community Structure by an Addition of External Carbon Source in BNR Process for Low C/N Ratio Sewage Treatment (낮은 C/N비 하수의 외부 탄소원 주입에 따른 생물학적 질소제거에서 미생물 군집 구조특성)

  • Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.831-838
    • /
    • 2008
  • This study investigated the characteristics of nitrogen removal and microbial community in a lab-scale A$_2$O activated sludge process filled with the fluidized media at an aerebic basin. The change of microbial community was monitored based on quinone profiles of activated sludge according to feeding sewage with/without external carbon source. Low C/N ratio(COD$_{Cr}$/T-N of 1.24) sewage was fed. The obtained results from this study were as follows; Ubiquinone(UQ) in the influent was in the descending order of UQ-8, UQ-10 and UQ-9. Menaquinone(MK) was simpler and much less than UQ. The ratio of UQ/MK was less than 0.41 and the dissimilarity was below 0.26. Without an external carbon source, MK-8 was the dominant species and there were 3 kinds of quinone species and low DQ and EQ values in an anaerobic basin. The ratio of UQ/MK increased to 2.3 in an anoxic basin. In an oxic basin, UQ-7 and UQ-8 were the dominant species. UQ-7 was dominating in suspended microorganisms, while UQ-8 was in attached microorganisms. With an external carbon source addition, MK-8 decreased but UQ-8 increased in an anaerobic basin. So did quinone species, DQ and EQ values. There was also a change in an anoxic basin with the improvement of denitrification. UQ-8 decreased instead, MK-7 and MK-8 increased. UQ/MK ratio decreased 2.3 to 1.4. It means that the dominant species change from Pseudomonas sp. to Bacillus and Micrococcus species. etc. In an oxic basin, UQ-8 replaced UQ-7 in suspended microorganisms and UQ-10 replaced UQ-8 in attached microbials. This seemed related with the growth of Nitrosomonas and Nitrobactor species.

Characterization of Toluene Vapor Removal Efficiency Using Alnus Firma Fruit in a Biological Treatment Process (오리나무 열매를 이용한 생물처리장치에서의 톨루엔 가스 처리효율 특성)

  • 공남식;차수길;서정윤
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.689-699
    • /
    • 2003
  • This study was to examine characteristics of treating toluene vapor, which gets to be problematic due to its harmful carcinogenicity and mass generation from various sources, through a biological treatment facility which is environment-friendly and adopts a high-efficient and low-cost clean technology. In order to identify whether Alnus Firma Fruit (AFF) can be used as a media for a bioreactor, its utility and basic operating factors, a study was conducted on pressure drop, supply of nutrient substances and retention time which are operating factors of a biofilter, and eliminating characteristics were compared between AFF and the conventional biological activatedcarbon (BAC) widely used as filter media. In the case of AFF, the initial microbial deposits was 2.3${\times}$10$^{7}$ CFU/g dry AFF, which represents the initial microbial density higher than the case of BAC showing 5.5${\times}$10$^{6}$ CFU/g dry BAC And it took about 2 weeks to acclimate until its eliminating rate got to be increased over 90%. As a result of comparing pressure loss taking place with the lapse of time between BAC and AFF, after 130 days passed at SV 25h$^{-1}$ , BAC showed that its eliminating efficiency had a tendency to drop greatly due to a great pressure loss (0.53\longrightarrow54.7 mm$H_2O$/m) caused by an excess of biomass as accumulated. On the other hand. AFF showed that the pressure drop was 0.53 mm$H_2O$/m, about 2 times as much as the initial pressure loss of 0.4 mm$H_2O$/m, which represents no great change in the pressure loss, and its eliminating efficiency was also shown to be continuously high. Therefore, when AFF was used as a filler for a biological treatment facility, a biological filter enabling improvement of the purifying efficiency to be promoted could be provided, and moreover, the pressure loss was so small that the filler replacement cycle or the back flushing cycle could be extended. So, even in terms of the operating cost, it was identified to be an economical filler When an inorganic material was used as a filler, the biofilters performance acted sensitively on whether nutrient substances were supplied or not. In the case of AFF with low adsorptivity, addition of ethyl-alcohol increased the solubility of toluene, and consequently, biodegradation got to be actively made by microbes, and thus, its eliminating rate could be increased. As the flow velocity and the inflow concentration got to be more increased, its eliminating rate got to be lower, and particularly, an increase in the flow velocity made its eliminating rate drop more greatly than an increase in the concentration.

Studies on the Isolation and Identification of Bacillus sp. for the Composting of Swine Manure and the Removal of Malodorous Gases from its Liquid Compost (돈분의 퇴비화를 위한 Bacillus sp.의 분리 동정 및 그 액체 비료의 악취 제거 연구)

  • 김규동;김기연;함영태
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.154-159
    • /
    • 2004
  • Bacillus species were isolated from swine manure to develope the microbial additive suitable for the rapid com-posting. The 3 of 4 isolated strains were identified as Bacillus cereus KD-2, B. pumilus KD-3, and B. licheni-formis KD-4. Bacillus sp. KD-1 was, however, not highly identical with any Bacillus sp. The isolated strains were analyzed their growth rates, enzyme activities, and antibacterial activities. The maximum growth tem-peratures of KD-1, KD-2, KD-3 and KD-4 were $45^{\circ}C$, $50^{\circ}C$, $53^{\circ}C$, and $55^{\circ}C$, respectively. The activities of pro-tease or amylase in mixed culture of 4 strains were similar in the range of $37^{\circ}C$ to $53^{\circ}C$ and activities of lipase in the range of $37^{\circ}C$ to $42^{\circ}C$ were twice higher than those of lipase in the range of $47^{\circ}C$ to $53^{\circ}C$. The antibacterial activity of KD-l, KD-2, or KD-3 against each other was not detected. That of KD-4 against KD-1, KD-2, or KD-3 was, however, detected. The organic compound and C/N ratio of compost fermented by the mixed culture were determined as 61.9% and 22.4%, respectively. The concentration of the ammonia gas was 12.35 mg/l in the liquid compost.

Reaction Characteristics of Dairy Wastewater through Aerobic Biodegradability Assessment (호기성 생분해도 평가를 통한 유가공 폐수의 반응특성)

  • Choi, Yong-Bum;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.64-71
    • /
    • 2018
  • The purpose of this study is to investigate the characteristics of the substrate of dairy wastewater through aerobic biodegradation and to use the results as the basic data for the efficient treatment of dairy wastewater. The SCODcr of the part of the matter that consisted of readily biodegradable organics (Ss) was 84.2%, which is higher than those of seafood processing wastewater (75.8~77.9%) and pigpen wastewater (58.2%). The proportion of non-biodegradable organics (SI) ranged from 5.6% to 6.4%, and the proportion of inert organics (SIi) generated by microbial metabolism ranged from 3.6 to 3.7%. The content coefficient (YI) of the non-biodegradable dissolved organic matter was in the range of 0.092 to 0.099, and the generation coefficient (Yp) of the inert substance produced by the microbial metabolism was in the range of 0.039 to 0.040. The analysis results of the organic component coefficient showed that approximately 91.0% of the dissolved organic matter of the dairy wastewater was biodegradable, and approximately 92.5% of the dissolved organic matter was the Ss component. Furthermore, the proportion of biodegradable organic matter in the total organic matter (TCODcr) was 89.3%. The proportions of non-biodegradable organics (SI) and non-biodegradable suspended organics (XI) were 3.0% and 7.7%, respectively, which are lower than those in similar wastewater. This means that the milk processing wastewater has a high aerobic biodegradability.

Evaluation of Kinetic Constant and Effect of Effluent Recycling in Wastewater Treatment from Fisheries Processing Plant using EMMC Process (EMMC공정을 이용한 수산물 가공공장 폐수처리에서 동력학적 인자 평가와 유출수반송의 영향)

  • Jeong, Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • EMMC(Entrapped Mixed Microbial Cell) process which is a kind of active cell immobilizing method was applied to treat fisheries processing wastewater biologically. Kinetic constants were calculated for organic and nitrogen removal and effect of effluent recycling on system performance was evaluated also. Yield coefficient, Y showed relatively low value compared with Y value obtained from conventional activated sludge process. It means that EMMC process can reduce amount of excess sludge significantly compared with conventional activated sludge process. Endogenous respiration coefficient $k_e$ of EMMC process also showed relatively low value compared with that of conventional activated sludge process. Yield coefficient Y, endogenous respiration coefficient $k_e$ and half saturation constant $k_s$ obtained from EMMC process in terms of nitrification were compared with reported value from literature based on suspended growth nitrification system. The value of Y obtained from this study has no difference compared with values obtained from literature review and $k_e$ of this study was low but $k_s$ of this study was high compared than values obtained from suspended growth nitrification system. To evaluate the effect of internal recycling on system performance, system was operated with internal recycling ratio of 1.5Q, 2.0Q, 2.5Q and 3.0Q. increase of internal recycling ratio effect more greatly on improvement of denitrification efficiency than that of nitrification efficiency. Accordingly, optimization of internal recycling ratio has to be based on improvement of anoxic reactor performance.

  • PDF

Bioremediation of Oil-Contaminated Soil Using Rhizobacteria and Plants (근권세균과 식물을 이용한 유류 오염 토양의 생물복원)

  • Kim Ji-Young;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.185-195
    • /
    • 2006
  • Phytoremediation is an economical and environmentally friendly bioremediation technique using plants which can increase the microbial population in soil. Unlike other pollutants such as heavy metals, poly-chlorinated biphenyl, trichloroethylene, perchloroethylene and so on, petroleum hydrocarbons are relatively easily degradable by soil microbes. For successful phytoremediation of soil contaminated with petroleum hydrocarbons, it is important to select plants with high removal efficiency through microbial degradation. In this study, we clarified the roles of plants and rhizobacteria and identified their species effective on phytore-mediation by reviewing the papers previously reported. Plants and rhizobacteria can degrade and remove the petroleum hydrocarbons directly and indirectly by stimulating each other's degradation activity. The preferred plant species are alfalfa, ryegrass, tall fescue, poplar, corn, etc. The microorganisms with a potential to degrade hydrocarbons mostly belong to Pseudomonas spp., Bacillus spp., and Alcaligenes spp. It has been reported that the elimination efficiency of hydrocarbons by soil microorganisms can be improved when plants were simultaneously applied. For more efficient restoration, it's necessary to understand the plant-rhizobacteria interaction and to select the suitable plant and microorganism species.

Phytoremediation of diesel-contaminated soils using alfalfa (Alfalfa를 이용한 디젤오염토양의 phytoremediation)

  • 심지현;이준규;심상규;황경엽;장윤영
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.127-136
    • /
    • 1999
  • In the past several years phytoremediation, defined as the use of plants for removing contaminants from media such as soils or water, has attracted a great deal of interest as a potentially useful remediation technology We attempted to assess the effectiveness of phytoremediation of diesel-contaminated soils in a green house. Screening test for selecting an appropriate plant was performed by observing the harmful effects of diesel dosage on the growth of 4 plants. Alfalfa was selected as a potentially useful plant among corn and barnyard grasses due to its high tolerance to the toxicity of diesel in growth. Bioremediation of the artificial diesel-contaminated soil packed in the PVC columns(0.3m in diameter $\times$ 1m in length) with air supplied, alfalfa planted, and alfalfa and air supplied was investigated for 100 days. The results of the column test showed plant effects on enhancing the biodegradation of diesel in the contaminated soils compared to the control column which had no plant. Injecting air to the columns during phytoremediation also showed additional effects on the removal rate of diesel. Comparison of microbial activity in each test column showed a beneficial effect of plants in the soil remediation processes. This results can be explained microbial activity in rhizosphere is a crucial factor for removing diesel.

  • PDF

Treatment of Food Garbage Using a Treatment Reactor and Microbial Consortium (발효소멸기를 이용한 음식물 쓰레기의 감량 및 악취제거)

  • Koh, Rae-Hyun;Lee, Kang-Hyoung;Yoo, Jin-Soo;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.306-312
    • /
    • 2006
  • Disposal of food garbage in most large cities is very troublesome task. To date, microbiological treatment has been received an attention as a garbage decomposition process. In this study, the inoculation effect of some cellulase, amylase and protease-producing bacteria and photosynthetic bacteria on food garbage treatment was examined. They were added into a treatment reactor specially designed in this study together with food garbage and incubated in various conditions for 15 days and the removals of food garbage and foul smell produced during the treatment were analyzed. Average decomposition percentages of the inoculated food garbage in treatment reactor were 11 and 18.8% under intermittent aeration (once in a day) and continuous aeration conditions (2 L/min), respectively, and these were higher than removal percentages in the corresponding uninoculated reactors,3.4 and 13.8%. Optimal pH and temperature for food garbage decomposition by inoculated bacteria were pH 7.0 and $30^{\circ}C$. Maximal decomposition percentage in the inoculated food garbage was 35% under the optimal condition (pH 7, $30^{\circ}C$, and continuous aeration). The malodor compounds generated from food garbage treatment such as complex foul smell and sulfur compounds were effectively reduced about 84% and 25.5%, respectively, with a biofilter composed of purple nonsulfur bacteria trapped in sponge. This decomposing capability of food garbage by these bacteria can be utilized for the rapid and efficient treatment of food garbage.

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.