• Title/Summary/Keyword: Microbial reduction

Search Result 615, Processing Time 0.028 seconds

Effects of Extracellular Electron Shuttles on Microbial Iron Reduction and Heavy Metals Release from Contaminated Soils

  • Hwang, Yun Ho;Shim, Moo Joon;Oh, Du Hyun;Yang, Jung-Seok;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.2
    • /
    • pp.16-24
    • /
    • 2014
  • To test the potential effects of extracellular electron shuttles (EES) on the rate and extent of heavy metal release from contaminated soils during microbial iron reduction, we created anaerobic batch systems with anthraquinone-2,6-disulfonate (AQDS) as a surrogate of EES, and with contaminated soils as mixed iron (hydr)oxides and microbial sources. Two types of soils were tested: Zn-contaminated soil A and As/Pb-contaminated soil B. In soil A, the rate of iron reduction was fastest in the presence of AQDS and > 3500 mg/L of total Fe(II) was produced within 2 d. This suggests that indigenous microorganisms can utilize AQDS as EES to stimulate iron reduction. In the incubations with soil B, the rate and extent of iron reduction did not increase in the presence of AQDS likely because of the low pH (< 5.5). In addition, less than 2000 mg/L of total Fe(II) was produced in soil B within 52 d suggesting that iron reduction by subsurface microorganisms in soil B was not as effective as that in soil A. Relatively high amount of As (~500 mg/L) was released to the aqueous phase during microbial iron reduction in soil B. The release of As might be due to the reduction of As-associated iron (hydr)oxides and/or direct enzymatic reduction of As(V) to As(III) by As-reducing microorganisms. However, given that Pb in liquid phase was < 0.3 mg/L for the entire experiment, the microbial reduction As(V) to As(III) by As-reducing microorganisms has most likely occurred in this system. This study suggests that heavy metal release from contaminated soils can be strongly controlled by subsurface microorganisms, soil pH, presence of EES, and/or nature of heavy metals.

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Biotic and Abiotic Reduction of Goethite (α-FeOOH) by Subsurface Microorganisms in the Presence of Electron Donor and Sulfate (전자공여체와 황산염 이용 토착미생물에 의한 침철석(α-FeOOH) 환원 연구)

  • Kwon, Man Jae;Yang, Jung-Seok;Shim, Moo Joon;Lee, Seunghak;Boyanov, Maxim;Kemner, Kenneth;O'Loughlin, Edward
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.54-62
    • /
    • 2014
  • To better understand dissimilatory iron and sulfate reduction (DIR and DSR) by subsurface microorganisms, we investigated the effects of sulfate and electron donors on the microbial goethite (${\alpha}$-FeOOH) reduction. Batch systems were created 1) with acetate or glucose (donor), 2) with goethite and sulfate (acceptor), and 3) with aquifer sediment (microbial source). With 0.2 mM sulfate, goethite reduction coupled with acetate oxidation was limited. However, with 10 mM sulfate, 8 mM goethite reduction occurred with complete sulfate reduction and x-ray absorption fine-structure analysis indicated the formation of iron sulfide. This suggests that goethite reduction was due to the sulfide species produced by DSR bacteria rather than direct microbial reaction by DIR bacteria. Both acetate and glucose promoted goethite reduction. The rate of goethite reduction was faster with glucose, while the extent of goethite reduction was higher with acetate. Sulfate reduction (10 mM) occurred only with acetate. The results suggest that glucose-fermenting bacteria rapidly stimulated goethite reduction, but acetate-oxidizing DSR bacteria reduced goethite indirectly by producing sulfides. This study suggests that the availability of specific electron donor and sulfate significantly influence microbial community activities as well as goethite transformation, which should be considered for the bioremediation of contaminated environments.

Optimization of Microbial Electrosynthesis Using Rhodobacter sphaeroides for CO2 Upcycling (CO2 고부가화를 위한 로도박터 스페로이데스를 활용한 미생물 전기합성 최적화 연구)

  • Hui Su Kim;Hwi Jong Jung;Danbee Kim;Samgmin Lee;Jiye Lee;Jin-Suk Lee;Myounghoon Moon;Chang Hyun Ko;Soo Youn Lee
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.20-26
    • /
    • 2023
  • Emitted CO2 is an attractive material for microbial electrochemical CO2 reduction. Microbial electrochemical CO2 reduction (i.e., microbial electrosynthesis, MES) using biocatalysts has advantages compared to conventional CO2 reduction using electrocatalysts. However, MES has several challenges, including electrode performance, biocatalysts, and reactor optimization. In this study, an MES system was investigated for optimizing reactor types, counter electrode materials, and CO2-converting microorganisms to achieve effective CO2 upcycling. In autotrophic cultivation (supplementation of CO2 and H2), CO2 consumption of Rhodobacter sphaeroides was observed to be four times higher than that with heterotrophic cultivation (supplementation of succinic acid). The bacterial growth in an MES reactor with a single-chambered shape was two times higher than that with a double chamber (H-type MES reactor). Moreover, a single-chambered MES reactor equipped with titanium mesh as the counter electrode (anode) showed markedly increased current density in the graphite felt as a working electrode (cathode) compared to that with a graphite felt counter electrode (anode). These results demonstrate that the optimized conditions of a single chamber and titanium mesh for the counter electrode have a positive effect on microbial electrochemical CO2 reduction.

Microbial Reduction of Iron(III) Oxides: Implication for Permeable Reactive Barriers. (철환원 미생물을 이용한 3가 철의 환원에 관한 연구)

  • 임현정;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.250-253
    • /
    • 2002
  • Remediation of groundwater using zero valent iron filings has received considerable attention in recent years. However, zero valent iron is gradually transformed to iron(III) oxides at permeable reactive barriers, so the reduction of iron(III) oxides can enhance the longevity of the reactive barriers. In this study, microbial reduction of Fe(III) was performed in anaerobic condition. A medium contained nutrients similar to soil solution. The medium was autoclaved and deoxygenated by purging with 99.99% $N_2$ and pH was buffered to 6, while the temperature was regulated as 2$0^{\circ}C$. Activity of iron reducing bacteria were not affected by chlorinated organics but affected by iron(III) oxide. Although perchloroethylene(PCE) was not degraded with only ferric oxide, PCE was reduced to around 50% with ferric oxide and microorganism. It shows that reduced iron can dechlorinate PCE.

  • PDF

The Anti-microbial Activity of Silk Fabrics Dyed with Chelidonium majus var. asiaticum extracts (애기똥풀 추출액으로 염색한 견직물의 항균성)

  • Jung, Jin-Soun
    • Fashion & Textile Research Journal
    • /
    • v.11 no.5
    • /
    • pp.827-832
    • /
    • 2009
  • The purpose of this study is to scientifically proof possibility of development of natural dye which has antimicrobial activity with Chelidonium majus var. asiaticum. For that silk fabrics dyed with Chelidonium majus var. asiaticum extracts were tested for anti-microbial activity. Bacterials used for test of anti-microbial activity were Staphylococcus aureus ATCC 6538, Klebsiella pneumoniae ATCC 4352 and Trichophyton mentagrophytes IFO 5466. The results of experiment were as follows ; 1. The more the number of times of dyeing increase the more value of K/S increased. 2. Reduction of bacterium against Staphylococcus aureus ATCC 6538 of silk fabrics dyed with Chelidonium majus var. asiaticum extracts was 99.9% without reference to the number of times of dyeing. 3. Reduction of bacterium against Staphylococcus aureus ATCC 6538 of silk fabrics dyed with Chelidonium majus var. asiaticum extracts was 99.9% after irradiation of 20 hour without reference to the number of times of dyeing. 4. Reduction of bacterium against Staphylococcus aureus ATCC 6538 of silk fabrics dyed with Chelidonium majus var. asiaticum extracts was over 94.8% after dry cleaning. As above silk fabrics dyed with Chelidonium majus var. asiaticum extracts were acquired a high anti-microbial activity against Staphylococcus aureus ATCC 6538.

Establishment of Washing Conditions for Salad to Reduce the Microbial Hazard (샐러드의 미생물학적 위해 감소를 위한 세척 조건 확립)

  • Kim, Jeong-Weon;Kim, Soo-Hee
    • Korean journal of food and cookery science
    • /
    • v.21 no.5
    • /
    • pp.703-708
    • /
    • 2005
  • The purposes of this study were to establish washing conditions for vegetable salad to reduce the microbial hazard by using sodium hypochlorite solution and eventually to implement HACCP for salad processing. By using the salad production line of Shinkeum Co. located in Gwacheon, Gyunggi-do, salad samples were washed under several washing conditions (chlorine dip period, chlorine concentration, rinse time, etc.) to determine the most effective conditions. The original washing line consisted of 3 baths (100 ppm chlorine water dip, water rinse, and water rinse), each with a capacity of 100 L of tap water and 5 kg of salad. First, the salad samples were washed with 100 ppm of sodium hypochlorite solution for various dip times (3, 6, 9, 12 min); however, only a 1 log- or less-reduction in total microbial counts was achieved in all groups and the time of chlorine water dip was not a significant factor in reducing the microbial hazard. When another water bath was added before the chlorine water dip (4-bath washing), a 2 log-reduction in total microbial counts was achieved. This result suggested the importance of pre-dipping salad materials in water before chlorine treatment to reduce the organic load on the surface of the vegetables. Coliforms were not detected at all after washing. As the concentration of chlorine $(50{\sim}150\;ppm)$ and rinse time $(0.5{\sim}2\;min)$ increased, greater microbial reduction was achieved; however, physical damage of the salad was observed. Finally, the optimum washing conditions for salad were determined as 3 min-water dip, 3 min-chlorine (100 ppm) dip, 2 min-rinse, and 2 min-rinse.

A Non-Pt Catalyst for Improved Oxygen Reduction Reaction in Microbial Fuel Cells

  • Kim, Jy-Yeon;Han, Sang-Beom;Oh, Sang-Eun;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Fe-tetramethoxyphenylporphyrin on carbon black (Fe-TMPP/C) is examined and compared with carbon (C) and Pt-coated carbon (Pt/C) for oxygen reduction reaction in a two chambered microbial fuel cell (MFC). The Fe-TMPP/C is prepared by heat treatment and characterized using SEM, TEM, and XPS. The electrochemical properties of catalysts are characterized by voltammerty and single cell measurements. It is found that the power generation in the MFC with Fe-TMPP/C as the cathode is higher than that with Pt/C. The maximum power of the Fe-TMPP/C is 0.12 mW compared with 0.10 mW (Pt/C) and 0.02 mW (C). This high output with the Fe-TMPP/C indicates that MFCs are promising in further practical applications with low cost macrocycles catalysts.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

Quality Dependence on Sanitization method of Dotori-muk muchim in Foodservice Operations(II) (단체급식소에서 이용되는 도토리묵 무침의 전처리 시 소독방법에 따른 품질 연구(II))

  • Kim, Heh-Young;Ko, Sung-Hee
    • Korean journal of food and cookery science
    • /
    • v.21 no.5
    • /
    • pp.557-566
    • /
    • 2005
  • The purpose of this study was to estimate the microbial quality of some raw vegetables and to suggest a safer method of sanitization and pre-preparation in foodservice operations. The production of Dotori-muk muchim was monitored from ingredient preparation to final product and during holding at different temperatures. Three sanitization methods were performed during the preparation with crown daisy (tap water, chlorine water, electrolyzed water). The largest reduction of microbial counts was for electrolyzed water (after treatment, total plate counts were decreased to $2.76{\sim}3.76$ Log CFU/g, coliform counts were not detected). In the case before immersed in chlorine water, Performed first washing is larger the effective reduction of microbial counts than or not.