• Title/Summary/Keyword: Microbial culture

Search Result 887, Processing Time 0.024 seconds

des-$Asp^4$-Amastatin, MRK-22 as an Inhibitor of Aminopeptidase M produced by Streptomyces sp. SL20209

  • Kho, Yung-Hee;Ko, Hack-Ryong;Chun, Hyo-Kon;Kim, Seung-Ho;Sung, Nack-Kie
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.154-157
    • /
    • 1995
  • MRK-22, an inhibitor of aminopeptidase M was isolated from the culture broth of Streptomyces sp. SL20209. The structure of MRK-22 was defined to be 3-amino-2-hydroxy-5-methylhexanoyl-valyl-valine, des-$Asp^4$-amastatin, by spectroscopic analysis and this was also confirmed by solid phase synthesis of the inhibitor. The molecular formula and weight of MRK-22 were $C_17H_33N_3O_5$ and MW 359($M^+$), respectively, and its $IC_50$ value against hog kidney AP-M was 0.79 $\mu$ g/ml.

  • PDF

Antibacterial and antifungal effects of Korean propolis against ginseng disease

  • Kim, Sung-Kuk;Woo, Soon Ok;Han, Sang Mi;Bang, Kyeong Won;Kim, Se Gun;Choi, Hong Min;Moon, Hyo Jung;Lee, Sung-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.2
    • /
    • pp.82-85
    • /
    • 2019
  • We investigated the anti-microbial activity of propolis against the pathogenic bacteria and fungi on ginseng. We selected six microbials that caused postharvest root rots in ginseng. Propolis extracts were prepared by using the ethanol extraction method. We seeded the bacteria and fungi related to ginseng disease on a specific culture medium, and treated it with propolis extracts by using the paper disc method. Propolis extracts indicate the anti-microbial activity against Paenibacillus polymyxa, Fusarium solani, Rhizoctonia solani AG-1 and Pythium ultimum. However, the anti-fungal activity of propolis is weak on Pseudomonas fluorescens subsp. Cellulosa and Colletotrichum gloeosporioides. As a result, the antimicrobial effects of propolis against microbial that prevent ginseng growth were confirmed. The antimicrobial effects are shown according to the concentration of propolis against root rot. The fungi also showed antibacterial effects in a dose-dependent manner.

Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation

  • Kim, Hyunsoo;Takegahara, Noriko;Walsh, Matthew C.;Ueda, Jun;Fujihara, Yoshitaka;Ikawa, Masahito;Choi, Yongwon
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.472-477
    • /
    • 2020
  • Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NF-κB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis.

Thermophilic Bacillus Species as a Microbial Indicator of the History of Compost Application (부숙퇴비 시용내력 지표미생물로서의 고온성 Bacillus)

  • Suh, Jang-Sun;Yeon, Byeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.285-290
    • /
    • 1998
  • Thermophilic Bacillus species was studied as a microbial indicator to pursue the compost a application history. Thermophilic Bacillus species could be easily determined by the plate culture method within 12 hours in $65^{\circ}C$ incubator. The density of thermophilic Bacillus species in soils was gradually increased with the application rate of rice straw compost, and correlated to the soil organic matter content in $R^2=0.835^{**}$(n=32) coefficient on the 43-year-long term rice paddy fields.

  • PDF

Phylogenetic Analysis of Culturable Arctic Bacteria

  • Lee Yoo Kyung;Kim Hyo Won;Kang Sung-Ho;Lee Hong Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.26-33
    • /
    • 2003
  • We isolated and identifed culturable Arctic bacteria that have inhabited around Korean Arctic Research Station Dasan located at Ny-Alsund, Svalbard, Norway $(79^{\circ}N,\;12^{\circ}E)$. The pure colonies were inoculated into nutrient liquid media, genomic DNA was extracted, and phylogenetic analysis was performed on the basis of 16S rDNA sequences. Out of total 227 strains, 198 strains were overlapped or unidentified, and 43 bacteria were finally identified: 31 strains belonged to Pseudomonas, 7 strains Arthrobacter, two Flavobacterium sp., an Achromobacter sp., a Pedobacter sp., and a Psychrobacter sp. For isolation of diverse bacteria, we need more effective transport method than 3M petri-films, which were used for convenience of transportation that was restricted by volume. We also need to use other culture media than nutrient media. We expect these Arctic bacteria can be used for screening to develop new antibiotics or industrial enzymes that are active at low temperature.

  • PDF

Production of Microbial-Transglutaminase [MTG] from Streptoverticillium mobaraense

  • Wang, Hong-Wei;Kim, In-Hae;Park, Chang-Su;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.322-327
    • /
    • 2007
  • Mineral salts in medium usually profoundly influence microorganism growth and protein synthesis. In order to produce microbial transglutaminase (MTG) with a high yield from Streptoverticillium mobaraense, we screened the minerals $CaCl_2,\;CoCl_2,\;FeSO_4,\;ZnSO_4,\;MnSO_4\;and\;CuSO_4$ for MTG fermentation. The results indicated that appropriate $FeSO_4$ concentrations could significantly promote cell growth and stimulate the production of MTG. With 15 mg/L of $FeSO_4$ added to medium, 58% improvements were noted in MTG productivity (2.24 U/mL). NaCl, $CaCl_2,\;and\;CoCl_2$ enhanced MTG productivity by less than 15%, and the optimal concentrations were determined as 1 g/L, 2 g/L, and 30 mg/L respectively. Furthermore, it was determined that 7.5 mg/L of $ZnSO_4$ in medium could augment MTG productivity by 20% and induce the stationary phase for MTG production to a period 24 hr earlier. This basic and novel discovery should result in the development of a good complement to the previously defined culture media for MTG fermentation.

Studies on the Development of a Microbial Cryoprotectant Formulation Using a W/O/W Multiple Emulsion System

  • Bae, Eun-Kyung;Cho, Young-Hee;Park, Ji-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.673-679
    • /
    • 2004
  • A microbial cryoprotectant formulation using a W/O/W multiple emulsion system was developed. The psychrotolerant microorganism, B4, isolated from soil in South Korea, was observed by the drop freezing method, in which the microorganism sample inhibited ice nucleation activity. The antifreeze activity was eliminated when the microorganism sample was treated with protease, indicating that the antifreeze activity was due to the presence of antifreeze protein. The result of the l6S rDNA sequencing indicated the B4 strain was most closely related to a species of the genus Bacillus. Culture broth of B4 strain (Bacillus sp.) and rapeseed oil containing 1 % polyglycerine polyricinolate (PGPR) were used as core and wall material, respectively. The most stable W/O emulsion was prepared at a core/oil ratio of 1:2. The highest W/O/W emulsion stability was achieved when the primary emulsion to external aqueous phase containing 0.5% caster oil polyoxyethylene ether $(COG25^{TM})$ ratio was 1:1. Microcrystalline cellulose showed better W/O/W emulsion stability than other polymer types. The viability of cells in a W/O/W emulsion was higher than free cells during storage at $37^\circ{C}$. An acidic pH and UV exposure decreased the viability of free cells, but cells in W/O/W emulsion were more stable under these conditions.

Development of Microbial Bioassay for Detection of Pesticide Residues (미생물을 이용한 농약잔류 분석법 개발)

  • 백수봉;양창술;오연선
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.297-304
    • /
    • 1994
  • This study was carried out to develop bioassay for detection of pesticide residues in agricultural products by using the soil microbial isolates sensitive to pesticides. One hundred bacterial isolates and eighty five fungal isolates were obtained from soil and their sensitivity to 10 ppm of several pesticides was examined in vitro. Five bacterial isolates and three fungal isolates were found sensitive to organochloride fungicide and two fungal isolates sensitive to organocopper fungicide. Among these isolates, B46, B93 and F67 were tested to find out the difference in sensitivity according to the methods of fungicide treatment. All of the isolates were found sensitive to 10 ppm of organochloride fungicides mixed directly in PDA. But they were found insensitive to the fungicide mixed in PDA after filtering through membrane filter. In case of organocopper fungicide, the isolates were found sensitive only when it was treated in PDA. And their sensitivity showed difference among various kinds of organochloride fungicides. B46 and B93 were employed to check the possibility as the agent for detection of the pesticidal residues in twenty eight agricultural products including rice. It was found that all samples had not residues because the samples did not inhibit the growth of isolates. When organochloride fungicides were applied to the above products, it was possible to detect the residues in fruits and vegetables at the concentration of 10 ppm, but not in starch-rich grains. B46 and B93 were identified as Bacillus sp. according to their bacterial characteristics in culture.

  • PDF

Degradation of Phenolic Resin, Resole by Microbial Consortia (미생물 컨소시엄에 의한 페놀수지 Resole의 분해)

  • 오계헌;최원식
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.220-222
    • /
    • 1998
  • Three microbial consortia were screened for their ability to degrade phenolic resin, resole as a sole carbon source. These microbial consortia were derived from soil samples collected from a phenolic resin manufacturing plant site. Among the consortia, the test consortium, designated as MS2, displayed approximately 70% degradation of the substrate, 100 mg of resole per liter, within the fist twelve days of incubation but the degradation was inhibited. During the incubation period, pH was decreased from 7.0 to 2.7, and the resole degradation became inhibited under the conditions. UV-scans of spent culture showed that the wavelength of maximum absorption was 261 nm for resole.

  • PDF

Enhancing Factors of Electricity Generation in a Microbial Fuel Cell Using Geobacter sulfurreducens

  • Kim, Mi-Sun;Cha, Jaehwan;Kim, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1395-1400
    • /
    • 2012
  • In this study, we investigated various cultural and operational factors to enhance electricity generation in a microbial fuel cell (MFC) using Geobacter sulfurreducens. The pure culture of G. sulfurreducens was cultivated using various substrates including acetate, malate, succinate, and butyrate, with fumarate as an electron acceptor. Cell growth was observed only in acetate-fed medium, when the cell concentrations increased 4-fold for 3 days. A high acetate concentration suppressed electricity generation. As the acetate concentration was increased from 5 to 20 mM, the power density dropped from 16 to $13mW/m^2$, whereas the coulombic efficiency (CE) declined by about half. The immobilization of G. sulfurreducens on the anode considerably reduced the enrichment period from 15 to 7 days. Using argon gas to create an anaerobic condition in the anode chamber led to increased pH, and electricity generation subsequently dropped. When the plain carbon paper cathode was replaced by Pt-coated carbon paper (0.5 mg $Pt/cm^2$), the CE increased greatly from 39% to 83%.