• Title/Summary/Keyword: Microbial colony

Search Result 201, Processing Time 0.032 seconds

Determination of Statistical Sampling Plans for Bacillus cereus in Salad and Kimbab (샐러드와 김밥의 Bacillus cereus 분석에 의한 통계적 검체채취 계획 수립)

  • Lim, Goo-Sang;Koo, Minseon;Kim, Hyun-Jung;Kho, Young-Ho;Park, Kun-Sang;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.16-20
    • /
    • 2014
  • The prevalence of Bacillus cereus was determined in salad and Kimbab obtained from commercial retailers. Among the 100 salad samples analyzed, 54 samples were negative for B. cereus, whereas the bacterial count was < 10 colony forming units (CFU)/g in 8 samples, < 100 CFU/g in 25 samples, < 1,000 CFU/g in 11 samples, and > 1,000 CFU/g in 2 samples. The mean (standard deviation) was 1.18 log CFU/g (${\pm}0.71$ log CFU/g). In Kimbab, B. cereus was isolated from 20 samples; the mean bacterial count was 1.01 log CFU/g (${\pm}0.71$ log CFU/g). On the basis of the monitoring data, a statistical sampling plan was determined with the NEW sampleplan program (ICMSF), which was used as an analytical tool. To identify the most suitable sampling plan, the microbial limits (m, M) and the maximum allowable number of sample units yielding unsatisfactory test results (c) were varied, but the number of samples units, n = 5, was fixed. Sampling plans showing an acceptable probability (Pa) over 0.95 were considered suitable. Two plans (A and B) were finally suggested. Parameters for plan A are n = 5, c = 0, m = 1,000, and M = 10,000 and for plan B are n = 5, c = 2, m = 100, and M = 1,000. Interestingly, the latter plan was identical to the microbial sampling plan used in New Zealand. Thus, it was concluded that the suggested plan can be used as a sampling plan that is in line with international standards.

Effects on microbial diversity of fermentation temperature (10℃ and 20℃), long-term storage at 5℃, and subsequent warming of corn silage

  • Zhou, Yiqin;Drouin, Pascal;Lafreniere, Carole
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1528-1539
    • /
    • 2019
  • Objective: To evaluate the effects on microbial diversity and biochemical parameters of gradually increasing temperatures, from $5^{\circ}C$ to $25^{\circ}C$ on corn silage which was previously fermented at ambient or low temperature. Methods: Whole-plant corn silage was fermented in vacuum bag mini-silos at either $10^{\circ}C$ or $20^{\circ}C$ for two months and stored at $5^{\circ}C$ for two months. The mini-silos were then subjected to additional incubation from $5^{\circ}C$ to $25^{\circ}C$ in $5^{\circ}C$ increments. Bacterial and fungal diversity was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiling and biochemical analysis from mini-silos collected at each temperature. Results: A temperature of $10^{\circ}C$ during fermentation restricted silage fermentation compared to fermentation temperature of $20^{\circ}C$. As storage temperature increased from $5^{\circ}C$ to $25^{\circ}C$, little changes occurred in silages fermented at $20^{\circ}C$, in terms of most biochemical parameters as well as bacterial and fungal populations. However, a high number of enterobacteria and yeasts (4 to $5\;log_{10}$ colony forming unit/g fresh materials) were detected at $15^{\circ}C$ and above. PCR-DGGE profile showed that Candida humilis predominated the fungi flora. For silage fermented at $10^{\circ}C$, no significant changes were observed in most silage characteristics when temperature was increased from $5^{\circ}C$ to $20^{\circ}C$. However, above $20^{\circ}C$, silage fermentation resumed as observed from the significantly increased number of lactic acid bacteria colonies, acetic acid content, and the rapid decline in pH and water-soluble carbohydrates concentration. DGGE results showed that Lactobacillus buchneri started to dominate the bacterial flora as temperature increased from $20^{\circ}C$ to $25^{\circ}C$. Conclusion: Temperature during fermentation as well as temperature during storage modulates microorganism population development and fermentation patterns. Silage fermented at $20^{\circ}C$ indicated that these silages should have lower aerobic stability at opening because of better survival of yeasts and enterobacteria.

Effects of sodium diacetate or microbial inoculants on aerobic stability of wilted rye silage

  • Li, Yan Fen;Wang, Li Li;Jeong, Eun Chan;Kim, Hak Jin;Ahmadi, Farhad;Kim, Jong Geun
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1871-1880
    • /
    • 2022
  • Objective: The primary goal was to identify the effectiveness of chemical or biological additives in delaying the deterioration of early-harvested wilted rye silage after exposure to air. Methods: Rye harvested as a whole plant at the early heading stage was wilted for 24 h. The wilted forage was divided into treatments including sodium diacetate (SDA) at 3 (SDA3) and 6 g/kg (SDA6), Lactobacillus plantarum (LP), L. buchneri (LB), or their equal mixture (LP+LB) at 1×106 colony-forming unit/g fresh matter. Results: After 60 d of conservation in 20-L silos, lactic acid was greater in LP and LP+LB silages than other treatments (102 vs 90.2 g/kg dry matter [DM]). Acetic acid was greatest in SDA6 (32.0 g/kg DM) followed by LB (26.1 g/kg DM) and was lowest in LP treatment (4.73 g/kg DM). Silage pH was lower with microbial inoculation and the lowest and highest values were observed in LP and untreated silages, respectively. After 60 d, neutral detergent fiber concentration was lowest in SDA6 silages, resulting in the greatest in vitro DM digestibility (846 g/kg DM). Aerobic stability was longest in SDA6 (176 h) followed by LB treatment (134 h). Instability after aerobiosis was greatest in LP silages (68 h), about 8 h less than untreated silages. After aerobic exposure, yeast and mold numbers were lowest in SDA6 silages, resulting in DM loss minimization. Exhaustion of acetic acid and lactic acid after aerobic exposure was lowest with SDA6 but greatest with untreated and LP silages. Conclusion: Treatment of early-cut wilted rye forage with SDA at 6 g/kg resulted in silages with higher feeding value and fermentation quality, and substantially delayed deterioration after aerobic exposure, potentially qualifying SDA at this load for promotion of silage quality and delaying aerobic spoilage of early-harvested (low DM) rye forage.

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Effects of Procyanidin on Meat Quality and Shelf-Life for Preserving Pork Patties during Chilled Storage

  • Jeong, Jin Young;Seol, Kuk-Hwan;Seong, Pil-Nam;Park, Beom-Young;Kim, Hyoun Wook
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.564-571
    • /
    • 2015
  • Grape seeds and pericarp are rich in procyanidins, a class of natural antioxidants and antimicrobials that can provide phytonutrients for healthy eating and extend food shelf life. The objective of this study was to assess the effect of procyanidins as preservatives in pork meat patties for 14 d. Pork patties were treated with 0, 0.1, or 0.3% procyanidin, and meat color, pH, volatile basic nitrogen (VBN), 2-thiobarbituric acid reactive substance (TBARS) values, and microbial populations were determined during storage at 4℃ for 14 d. The color of pork patties treated with procyanidin showed lower lightness and higher redness values than untreated controls, and procyanidin treatment reduced pH values significantly (p<0.05). VBN values decreased significantly (p<0.05) with the 0.3% procyanidin treatment and increased significantly (p<0.05) during storage. TBARS values were markedly lower in procyanidin-treated meat than in the untreated control. In addition, procyanidin suppressed total bacterial colony and Escherichia coli counts significantly (p<0.05) relative to the control samples. Our findings suggest that procyanidin could be used as a food preservative in pork patties due to its natural antioxidation and antimicrobial activities, and that it may contribute to an improved healthy diet.

Outbreak of Bioaerosols with Continuous Use of Humidifier in Apartment Room

  • Lee, Ji-Hyun;Ahn, Kang-Ho;Yu, Il-Je
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.103-106
    • /
    • 2012
  • The effect of continuous humidifier use on the bioaerosol concentration in an indoor environment was investigated. An ultrasonic humidifier was operated for 10 hr per day for 15 days in an apartment room. During this time period, viable bioaerosol samples were taken using a single-stage Andersen sampler containing culture media plates for bacteria and fungi. The culture plates were then incubated at room temperature for 2~7 days depending on the media. The counts for the air sample plates were corrected for multiple impactions using the positive hole conversion method and are reported as the colony forming units per cubic meter of air (CFU/$m^3$). While the bacterial concentration measured using the tryptic soy agar (TSA) did not show any significant change during the first 3 days, the concentration increased from the $6^{th}$ day (6979 CFU/$m^3$) and reached a maximum on the $9^{th}$ day (46431 CFU/$m^3$). The concentration then decreased to 2470 CFU/$m^3$ on the $12^{th}$ day, at which point the fungal concentration increased rapidly to 14424~16038 CFU/$m^3$. Also, while the fungal concentration showed a significant change until the $9^{th}$ day of humidifier use, fungal growth was observed on the wallpaper and increased rapidly from the $12^{th}$ day. However, the bacterial concentration increased rapidly after the fungi were removed by remediation. The major fungal species identified in the samples were Penicillium representing 34%, Aspergillus representing 31%, Cladosporium representing 24%, and Alternaria representing 1%. The results also indicated that a relative humidity over 80% was easily achieved with continuous humidifier use. Yet, maintaining a high humidity in a room can cause a rapid outbreak of microbial growth.

Identification of an Entomopathogenic Bacterium, Serratia sp. ANU101, and Its Hemolytic Activity

  • Kim, Yong-Gyun;Kim, Keun-Seob;Seo, Ji-Ae;Shrestha, Sony;Kim, Hosanna-H.;Nalini, Madanagopal;Yi, Young-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.314-322
    • /
    • 2009
  • Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. Owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

Inhibition of Micobial Growth by Paraquat (제초제 Paraquat의 미생물 생육저해 작용)

  • Kim, Mi-Lim;Park, Chan-Sung;Choi, Kyoung-Ho
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.283-288
    • /
    • 1995
  • This study was carried out to investigate the toxic action of herbicide, paraquat(1,1'-dimethyl-4,4'-bipyridylium-dichloride), against microorganisms. The toxic effect of paraquat was observed mainly using Escherichia coli(KCTC 1039), as follows; Growth of aerobic microorganisms which comprise 4 strains of bacteria and 2 strains of yeast and 4 strains of mold was inhibited drastically in the presence of 1.0mM paraquat But the growth of anaerobic bacteria was not affected by the chemical. When actively growing cells of E. coli were exposed to the paraquat at the concentration higher than 1.0 mM, they rapidly lost their ability to form colony and clearly formed inhibitory zone by well test More than 50% of the cells were killed by 1.0 mM paraquat treatment, even at immediate addition of paraquat to the medium.

  • PDF

Effect of Steeping Treatment in the Natural Antimicrobial Agent Solution on the Quality Control of Processed Tofu (천연항균제 처리에 의한 가공두부의 선도유지 효과)

  • 정준호;조성환
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • To prove the extension of shelflife of soybean curd(Tofu) steeped in the diluted solution of botanical antimicrobial agent and stored at 20$^{\circ}C$, such chemical & microbial properties as the contents of moisture, crude protein and crude fat, colony count and surface color of Tofu were investigated in comparison with the control. Tofu treated with botanical antimicrobial agents showed higher contents of moisture, crude protein and crude fat compared to those of the control Tofu through all the storage period. After 7 days of the storage period, cell count of coliform bacteria reach 75 x 103CFU/m1 in the control Tofu, whereas 13∼39 CFU/ml in Tofu treated with botanical antimicrobial agent Treatment of Tofu with botanical antimicrobial agent seemed to be a potential method to prolong the shelflife of processed Tofu.

Identification of the bphC Gene for meta-Cleavage of Aromatic Pollutants from a Metagenomic Library Derived from Lake Waters

  • Moon Mi-Sook;Lee Dong-Hun;Kim Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.393-399
    • /
    • 2004
  • Useful genes can be Screened from various environments by construction of metagenomic DNA libraries. In this study, water samples were collected from several lakes in mid Korea, and analyzed by T-RFLP to examine diversities of the microbial communities. The crude DNAs r were extracted by the SDS-based freezing-thawing method, and then further purified using an $UltraClean^{TM}$ kit (MoBio, USA). The metagenomic libraries were constructed with the DNAs partially digested with EcoR I, BamH I, and Sac II in Escherichia coli DH 10B using the pBACe3.6 vector. About 44.0 Mb of metagenomic libraries were obtained with average inserts 13-15 kb in size. The bphC genes responsible for degradation of aromatic hydrocarbons via mets-cleavage were identified from the metagenomic libraries by colony hybridization using the bphC specific sequence as a probe. The 2,3-dihydroxybiphenyl (2, 3-DHBP) dioxygenase gene (bphC ), capable of degradation of 2,3-DHBP, was cloned and its nucleotide Sequences analyzed. The genes consisted of 966 and 897 base pairs with an ATG initiation codon and a TGA termination codon. The activity of the 2,3-DHBP dioxygenase was highly expressed to 2,3-DHBP and Showed a broad substrate range to 2,3-DHBP, catechol, 3-methylcatechol and 4-methylcatechol. These results in-dicated that the bphC gene identified from the metagenomes derived from lake water might be useful in the development of a potent strain for degradation of aromatic pollutants.